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Motion of free bodies in gravitational fields

Geodesic

In the general theory of relativity free bodies1 move along special curves, called geodesics. A
geodesic is a generalization of the notion of a line to curved spaces. Among all curves connecting
two points geodesic is the curve with extremal measure. Geodesic is also the trajectory of a body
moving with “constant velocity”.

The term geodesic comes from geodesy, the science of measuring the size and shape of Earth.
In the original sense, a geodesic was the shortest route between two points on the Earth’s surface,
namely, a segment of a great circle. The term has since been generalized to include measurements
in more general mathematical spaces.

Geodesic as constant velocity trajectory

The velocity vector ua of a moving body is defined as

ua =
dxa

ds
, (1)

where dxa is the infinitesimal movement of the body along the trajectory and ds =
√

gabdxadxb

is the invariant interval.
In special relativity a free body moves with constant velocity such that the differential of the

velocity along the trajectory vanishes,
dua = 0 . (2)

This equation is not generally covariant and cannot by used in the curved space of general
relativity. A suitable generalization to curved spaces is vanishing of the covariant differential of
the velocity,

Dua = 0 . (3)

This is actually the geodesic equation. It can be also written as

dua

ds
+ Γa

bcu
buc = 0 , (4)

or
d2xa

ds2
+ Γa

bc

dxb

ds

dxc

ds
= 0 . (5)

One can interpete this equation as (the relativistic generalization of) Newton’s second law of
motion: acceleration of the body equals the force acting on the body (divided by mass). Therefore
the quantities −Γa

bcu
buc appear as forces — inertial and gravitational — acting on the body.

Since the Christoffel symbols (and hence the forces) are propotinal to derivatives of the metric
tensor, one can say that the latter plays the role of the potential of gravitational forces. Thus the
gravitational field is given by the metric tensor of the time-space and is thus a tensor field.

Geodesic as extremal trajectory

The measure µ of a trajectory (of a moving body) is defined as the sum of infinitesimal intervals
ds along the trajectory,

µ =
∫

ds . (6)

The extremal trajectory is the one where the variation of the measure as function of the trajectory
vanishes,

δµ = 0 . (7)

1In general relativity a free body is a body free from all physical forces. Gravitational forces are equivalent to
inertial forces and do not count as physical.
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To calculate the variation of the measure we first vary the interval ds,

δds = δ
√

gabdxadxb =
1
2

1√
gabdxadxb

δ
(
gabdxadxb

)
=

1
2

1
ds

(
δgabdxadxb + 2gabδdxadxb

)
. (8)

Using δgab = gab,cδx
c and 1

dsgabdxb = ua gives2

δds =
1
2
gab,cu

aubδxcds + δdxcuc , (9)

where in the second term the summation index a was replaced with c.
Assuming the functions are smooth enough we can exchange the order of differentials in the

second term and integrate it by parts using

δdxcuc = dδxaua = d(δxaua)− δxcduc. (10)

The full differential does not contribute to the variation, and we finally arrive at

δµ =
∫

dsδxc

(
−duc

ds
+

1
2
gab,cu

aub

)
= 0 . (11)

Since the variation δx is arbitrary, it is the expression in parentheses that should be equal zero
identically along the trajectory, which gives the following equation for the curve with extremal
measure,

duc

ds
− 1

2
gab,cu

aub = 0. (12)

This equation is equivalent to the no-acceleration equation (3)3. Thus the trajectory with extremal
measure is also the trajectory along which the covariant differential of the velocity of freely moving
body is zero. This is the consequence of the fact that the action S of a free body with mass m is
propotional to the measure of its trajectory,

S = −mc

∫
ds . (16)

Motion of a ray of light

The equation (3) is not applicable to the propagation of a ray of light since the inderval ds along
the ray is always zero. In this case one has to use certain parameter, λ, which varies (smoothly)
along the ray. Then one can introduce the wave-vector, ka = dxa

dλ . In special relativity the ray of
light propagates along a line where dka = 0. In a curved space in analogy with (3) this becomes

Dka = 0 , (17)

or
dka

dλ
+ Γa

bck
bkc = 0 . (18)

These equations, together with the condition that for the ray of light always kaka ∝ dxadxa =
ds2 = 0, also determine the parameter λ.

2As always,

f,a
.
=

∂f

∂xa
.

3Indeed, from

0 = Dgab = dgab − Γe
acgebdxc − Γe

bcgaedxc = (gab,c − Γbac − Γabc)dxc (13)

it follows that
gab,c = Γbac + Γabc . (14)

Inserting this into (12) and using the symmetry uaub = ubua gives

duc

ds
−

1

2
gab,cuaub =

duc

ds
−

1

2

“
Γbacuaub + Γabcuaub

”
=

duc

ds
− Γabcuaub =

Duc

ds
, (15)

which had to be demonstrated.
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Motion of free bodies in general relativity

In general relativity a free body — that is, a body affected only by inertial and gravitational forces
— moves along a geodesic. Massive bodies do not create physical fields around them but rather
distort space-time in their vicinity causing the geodesics to become curved.

Exercises

1. Argue that there is no difference between vectors with indices up and vectors with indices
down in a Euclidean space with Cartesian coordinates.

2. Argue that the quantity uaua = gabu
aub is a (covariant) scalar and calculate its value.

3. Prove that (4) and (12) are equivalent.

4. Consider the parametric equations for a line in Cartesian coordinates x and y,

d2x

ds2
= 0 ,

d2y

ds2
= 0 . (19)

Make a coordinate transformation to polar coordinates (x = r cos θ, y = r sin θ) and derive
the corresponding equations in the r, θ coordinates. Prove that they are identical to the
geodesic equation (5).

5. Consider a non-relativistic motion of a free body in a plane with Cartesian coordinates x
and y. The equation of motion of the body is given as

dvx

dt
= 0 ,

dvy

dt
= 0 . (20)

Make a transformation to polar coordinates {r, θ} and derive the corresponding equations
for the velocity components {vr, vθ}.
Prove that they are identical to the geodesic equations Dvr = 0, Dvθ = 0.
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