
note3 [16. december 2015]

Covariant differentiation

Vectors in curved spaces In everyday life—which spatially is largely restricted to a curved
two-dimensional metric space: the surface of Earth—a vector is a small arrow pointing in a certain
direction along the surface. For example, the arrow on a road-sign indicating the direction toward
the nearest town. The arrow must obviously be small compared to (at least) the relief structures
on the Earth’s surface.

The important property of the vector is that, although it might point at different direction
relative to your car, it always points in the direction of the town. In other words a vector has
certain useful transformational properties when one changes ones reference frames.

Geometrically the arrow can be described by specifying the coordinates of the nock and the
head the arrow. Actually, one only needs the coordinate differences between these two points, as
the absolute position of the road-sign is not terribly important (as long as you can still see it from
the car on the road).

The smallness of the arrow in mathematical language means that the coordinate difference is
infinitesimal. In other words,

A vector—in the sence of a small pointing arrow—is a coordinate differential.

In pysics we use many different vectors, but they are all related to small arrows in the sence
that under a change of the reference frame they all transform as coordinate differentials.

Coordinates and vectors A set of four numbers used to specify the location of an event in
space-time1 is called coordinates and is denoted as {x0, x1, x2, x3}, or as xa, or simply as x.

Under a general coordinate transformation x ← x′ the coordinate differentials dx ← dx′

transform linearly,

dxa =
3∑

b=0

∂xa

∂x′b
dx′b . (1)

through the Jacobian matrix J ≡ ∂x′b

∂xa .
There exist another object that transforms linearly – the set of partial derivatives of a scalar

function φ(x). It transforms through the inverse Jacobian matrix2 J−1 = ∂xa

∂x′b ,

∂φ

∂xa
=

3∑
b=0

∂φ

∂x′b
∂x′b

∂xa
. (2)

A set of four quantities Aa ≡ {A0, A1, A2, A3}, is called a vector with index up3 if it transforms
as coordinate differentials in equation (1),

Aa =
3∑

b=0

(
∂xa

∂x′b

)
A′b . (3)

A set of four quantities Aa is called a vector with index down if it transforms as derivatives of a
scalar in equation (2),

Aa =
3∑

b=0

(
∂x′b

∂xa

)
A′

b . (4)

1For example, time, latitude, longitude, an height above the sea level.
2Indeed,

JJ−1 =
3X

b=0

∂xa

∂x′b
∂x′b

∂xc
=

∂xa

∂xc
= δa

c ≡

0BB@
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1CCA .

3Also called contra-variant vector.
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In the following we shall use the implicit summation notation where we drop the summation
sign and always assume a summation over the index that appears in the up and down positions
in a term,

AaBa ≡
3∑

a=0

AaBa . (5)

Quantities which transform as vectors or their products—that is, linearly through Jacobi matrix
and its inverse—are said to transform covariantly. These quantities are called tensors. The number
of the indices is called the rank of the tensor.

The contraction AaBa is apparently a scalar (tensor with rank zero), as it is invariant under
coordinate transformation. Indeed,

AaBa =
∂xa

∂x′b
A′b ∂x′c

∂xa
B′

c = A′bB′
b . (6)

Metric tensor The metric tensor gab defines the metric – the invariant infinitesimal interval,
ds2, between two close events in time-space separated by dxa,

ds2 = gabdxadxb . (7)

Since dxa is an arbitrary index-up vector, the construction gabdxb transforms as an index-down
vector and thus the metric tensor connects index-up and index-down vectors,

Aa = gabA
b . (8)

Covariant differential In curvilinear coordinates the ordinary differential of a vector, dAa, is
not a covariant quantity, since generally

dAa = d(gabA
b) = gabdAb + dgabA

b 6= gabdAb , (9)

if dgab 6= 0, that is, if the metric tensor is not constant throughout time-space.
In order to write covariant differential equations we need a covariant differential, denoted as

DAa, which satisfies the covariance condition,

DAa = gabDAb = DgabA
b. (10)

The covariant differential has to contain dAa and an additional term which would ensure cova-
riance. As a contribution to differential the additional term must be linear in dx. Moreover, it
must also be linear in A if we demand linearity of the operation of differentiation. The covariant
differentical can then be generally written as

DAa = dAa + Γa
bcA

bdxc , (11)

where the factor Γa
bc (apparently, not itself a covariant tensor) is called the Christoffel symbol.

Differential of a scalar d(AaBa) is already a covariant quantity, therefore

D(AaBa) = d(AaBa) (12)

for an arbitrary Ba. If we demand that covariant differential satisfies the Leibnitz rule4 we find5

DAa = dAa − Γb
acAbdxc . (13)

4 The Leibnitz rule states that
D(AB) = A DB + B DA .

5 Applying the Leibnitz rule to (12) gives

DAaBa + Aa(dBa + Γa
bcBbdxc) = dAaBa + AadBa .

Simplifying and exchanging a↔ b in the Γ-term gives

DAaBa = (dAa − Γb
acAbdxc)Ba .

Since Ba is arbitrary, DAa = dAa − Γb
acAbdxc.
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With the comma-notation for partial derivatives,

dAa =
∂Aa

∂xc
dxc ≡ Aa

,cdxc , (14)

the covariant differentials take the form

DAa =
(
Aa

,c + Γa
bcA

b
)
dxc , (15)

DAa =
(
Aa,c − Γb

acAb

)
dxc . (16)

The expressions in the parentheses are tensors, since when multiplied by arbitrary vector dxc they
produce vectors. These tensors are called covariant derivatives and are denoted as

Aa
;c = Aa

,c + Γa
bcA

b , (17)

Aa;c = Aa,c − Γb
acAb . (18)

Christoffel symbols and the metric tensor Although the Christoffel symbol itself is not a
tensor, the linear combination

Γa
bc − Γa

cb (19)

is a tensor. Indeed, consider the difference,

ϕ;c;b − ϕ;b;c = (Γa
bc − Γa

cb)ϕ;a , (20)

where ϕ is an arbitrary scalar. The left-hand side is a tensor and ϕ;a is also a tensor, therefore
Γa

bc − Γa
cb is also a tensor. The latter is equal zero in a locally flat frame. Being a tensor it is than

equal zero in all other frames. Therefore Christoffel symbol is symmetric6 over exchange of the
two lower indexes,

Γa
bc = Γa

cb . (21)

The covariance condition (10) is fullfilled if the covariant derivative of the metric tensor7

vanishes,
Dgab = 0 . (22)

This condition together with the symmetry (21) determines8 the Christoffel symbol through the
derivatives of the metric tensor,

Γabc =
1
2

(gab,c − gbc,a + gac,b) . (23)

6 Spaces with this property are called torsion-free.
7 The Leibnitz rule D(AaBb) = DAaBb +AaDBb gives the definition of the covariant differential of a tensor as

DF ab = dF ab + Γa
cdF cbdxd + Γb

cdF acdxd.

8 The (vanishing) Dgab is given as

Dgab = dgab − Γd
acgdbdxc − Γd

bcgaddxc = 0 .

This can be written as
gab,c − Γbac − Γabc = 0 .

Exchanging indices gives two other equations,

−gbc,a + Γcba + Γbca = 0 ,

gca,b − Γacb − Γcab = 0 .

Finally, adding the last three equations gives (23).
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Exercises

1. Covariant differentiation in polar coordinates

Let x, y be Cartesian coordinates in a flat two-dimensional space with the metric

dl2 = dx2 + dy2 .

Consider the polar coordinates

x = r cos θ , y = r sin θ .

(a) Calculate the interval dl2 in polar coordinates and find the corresponding metric tensor
gab (the indexes a and b in polar coordinates take the values r, θ).

(b) The line element d~l is defined as

d~l = dx~ex + dy~ey ,

where ~ex and ~ex are the Cartesian uint vectors,

~ex · ~ex = ~ey · ~ey = 1 , ~ex · ~ey = 0 .

Consider this line element in polar coordinates,

d~l = dr~er + dθ~eθ ,

and find the polar unit vectors ~ea, a = r, θ.

(c) Argue and check that ~ea · ~eb = gab.

(d) Find gab = g−1
ab , ~e a = gab~eb, and ~e a · ~eb.

(e) Consider a vector ~A = Aa~ea = Aa~e
a. Consider the relation between the actual dif-

ferential of the vector, DAa = ~ea · d ~A, and the apparent differential of the vector,
dAa = d(~ea ~A): prove that9

DAa = dAa + (~ea · ~eb,c) Abdxc,

DAa = dAa −
(
~e b · ~ea,c

)
Abdxc.

Argue that the expression in parentheses is the Christoffel symbol.

2. Argue, that the Christoffel symbol is not a tensor.

3. A traveller starts from Earth and moves along a line with constant acceleration g for 25
traveller’s years then with constant deceleration g again for 25 traveller’s years. How far
from Earth will they reach? What was their maximum speed in the Earth’s frame (assumed
inertial)? The traveller then flies back to Earth in the same manner. How many years will
have passed on Earth since his departure when he comes back to Earth?

9comma-index denotes partial derivative,

φ,c ≡
∂φ

∂xc
.
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