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Friedman (FLRW) universe

The Friedman universe is a cosmological model where the universe is assumed to be homogeneous,
isotropic, and filled with ideal fluid. The assumption of homogeneity and isotropicity of the universe
is often referred to as the cosmological principle. Empirically, it seems to by justified on scales larger
that 100 Mpc. The isotropic and homogeneous model is sometimes called the Standard Model of
present-day cosmology. It is most often refered to as Friedman-Lemaitre-Robertson-Walker model
(or FLRW model, for short).

The Friedman equation is the Einstein equation applied to the Friedman universe as a whole.
It describes the temporal evolution of a Friedman universe.

Spaces with constant curvature

A homogeneous and isotropic universe is a space with constant curvature.
Two-dimensional spaces of constant curvature are three-dimensional spheres (positive curva-

ture), pseudo-spheres (negative curvature), and planes (zero curvature).
On a sphere the length element in the ordinary spherical coordinates is given as

dl2 = a2
(
dθ2 + sin2 θdφ2

)
, (1)

where a is the radius of the sphere.
Let us introduce the polar coordinates {r, φ} on the sphere, with r measuring the distance to

the north pole. The length of a circle around north pole, θ = const, is equal 2πa sin θ. Therefore
if we want the circumference of the circle to be equal 2πr, we need to define r = a sin θ.

The length element in the polar coordinates becomes

dl2 =
dr2

1− r2

a2

+ r2dφ2 . (2)

On a pseudo-sphere, where the curvature is negative, the length element is correspondingly

dl2 =
dr2

1 + r2

a2

+ r2dφ2 . (3)

In angular coordinates r = a sinh θ the latter becomes

dl2 = a2
(
dθ2 + sinh2 θdφ2

)
. (4)

On a plane, where the curvature is zero, the length element is

dl2 = dr2 + r2dφ2 . (5)

Analogously, a three-dimensional space with constant curvature can have one of the following
three possible geometries:
• flat (zero curvature),

dl2 = dr2 + r2(dθ2 + sin2 θdφ2) = a2dΩ2
3 , (6)

where
dΩ2

3 = dχ2 + χ2(dθ2 + sin2 θdφ2) , (7)

where r = aχ, χ ∈ [0,∞] ;
• closed (positive curvature),

dl2 =
dr2

1− r2

a2

+ r2(dθ2 + sin2 θdφ2) = a2dΩ2
3 , (8)

where
dΩ2

3 = dχ2 + sin2 χ(dθ2 + sin2 θdφ2), (9)
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where r = a sinχ, χ ∈ [0, π] ;
• and open (negative curvature),

dl2 =
dr2

1 + r2

a2

+ r2(dθ2 + sin2 θdφ2) = a2dΩ2
3 , (10)

where
dΩ2

3 = dχ2 + sinh2 χ(dθ2 + sin2 θdφ2), (11)

where r = a sinhχ, χ ∈ [0,∞[ .

Friedman equation

Friedman metric1 is a (generic) synchronous metric in a homogeneous and isotropic universe,

ds2 = dt2 − a(t)2dΩ2
3 , (12)

where a(t)2dΩ2
3 is the line element in a three-dimensional space of constant curvature (open, closed,

or flat), and a(t) is the time-dependent scale factor of the universe.

Closed universe In a closed Friedman universe the metric is

ds2 = a2
(
dη2 − dχ2 − sin2 χ(dθ2 + sin2 θdφ2)

)
, (13)

where r = a sinχ, and η is the scaled time coordinate,

dt = adη . (14)

Now the following Maxima script

derivabbrev:true; /* a better notation for derivatives */
load(ctensor); /* load the package to deal with tensors */
ct_coords:[eta,chi,theta,phi]; /* our coordiantes: eta chi theta phi */
depends([a],[eta]); /* the scale, a, depends on eta */
lg:ident(4); /* set up a 4x4 identity matrix */
lg[1,1]: a^2; /* g_{\eta\eta} = a^2 */
lg[2,2]:-a^2; /* g_{\chi\chi} = -a^2 */
lg[3,3]:-a^2*sin(chi)^2; /* g_{\chi\chi} */
lg[4,4]:-a^2*sin(chi)^2*sin(theta)^2; /* g_{\phi\phi} */
cmetric(); /* compute the prerequisites for further calculations */
christof(mcs); /* print out the Christoffel symbols, mcs_{bca}=\Gamma^a_{bc} */
uricci(true); /* print out the elements of the Ricci tensor */
scurvature(); /* Ricci scalar curvature */

calculates the components of the Ricci tensor2 and the Ricci scalar for this metric,

Rη
η =

3
a4

(a′2 − aa′′) , Rχ
χ = Rθ

θ = Rφ
φ = − 1

a4
(2a2 + a′2 + aa′′) , R = − 6

a3
(a + a′′) , (15)

where prime denotes the η-derivative.
1also referred to as Friedman-Lemaitre-Robertson-Walker in different combinations.
2The script also calculates the Christoffel symbols, Γη

ηη = Γχ
ηχ = Γθ

ηθ = Γφ
ηφ = Γη

χχ = a′

a
, Γθ

χθ = Γφ
χφ =

cot χ, Γη
θθ = a′

a
sin2 χ, Γχ

θθ = − cos χ sin χ, Γφ
θφ = cot θ, Γη

φφ = a′

a
sin2 χ sin2 θ, Γχ

φφ = − cos χ sin χ sin2 θ, Γθ
φφ =

− cos θ sin θ.
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The energy-momentum tensor for the perfect fluid is3

Tab = (ε + p)uaub − pgab , (16)

where ε is the rest-energy density and p is the pressure. In synchronous Friedman coordinates the
matter is at rest and the 4-velocity is ub = { 1

a , 0, 0, 0}.
Correspondingly, the Einstein equation

Ra
b −

1
2
Rδa

b = κT a
b (17)

then has the η
η component

3
a4

(a2 + a′2) = κε, (18)

and the three identical spatial components,

1
a4

(a2 + 2aa′′ − a′2) = −κp , (19)

called the Friedman equations for a closed universe,
If the relation between ε and p, called the equation of state of the matter, is known, the energy

density ε can be determined as function of a from the energy conservation equation. The latter
must have the form

dE = −pdV , (20)

where V is a volume element in the Friedman universe, and E = εV is the energy content of this
volume. Since the volume is proportional to a3, and both ε and a in a Friedman universe can only
depend on time, equation (20) can be rewritten as

(εa3)′ + p(a3)′ = 0 . (21)

It is easy to show, that equation (21) actually follows from the Friedman equations (18) and (19).
The energy conservation equation (20) can also be written as

3da

a
= − dε

ε + p
. (22)

When the dependence ε(a) is found by integration of the energy conservation equation (22),
the solution to the Friedman equation can be obtained as the integral

η = ±
∫

da

a
√

1
3κεa2 − 1

. (23)

Open universe In an open Friedman universe the metric is

ds2 = a2
(
dη2 − dχ2 − sinh2 χ(dθ2 + sin2 θdφ2)

)
, (24)

where r = a sinhχ, and adη = dt. This metric can be obtained from the closed universe metric (13)
by a formal substitution

{a, η, χ} → {ia, iη, iχ} . (25)

3Interpreting the equations T ab
,b = 0 as conservation laws leads to the following interpretations of the components

of the energy-momentum tensor: T 00 is energy density, T 0α is momentum density, T αα is pressure, and T αβ wher
α 6= β is the shear stress. For a perfect fluid at rest the shear stress is zero and the momentum is also zero. Thus in
the frame where the element of the liquid is at rest, ua = {1, 0, 0, 0}, the energy-momentum tensor is diagonal with
components ε, p, p, p where ε is the rest-energy and p is the pressure. Apparently, the covariant form must then be
T ab = (ε + p)uaub − pgab.

3



note12 [16. december 2015]

Therefore the Friedman equation for an open universe can be readily obtained from (18) by the
substitution (25),

3
a4

(a′2 − a2) = κε, (26)

with the integral solution,

η = ±
∫

da

a
√

1
3κεa2 + 1

. (27)

Exercises

1. Calculate the (diagonal components of the) Ricci tensor in Friedman coordinates for a closed
universe.

2. Argue that the energy conservation equation,

(εa3)′ + p(a3)′ = 0 , (28)

follows from the field equations
3
a4

(a2 + a′2) = κε , (29)

and
1
a4

(a2 + 2aa′′ − a′2) = −κp . (30)

3. Consider a flat (Euclidean) isotropic universe with the metric

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2) .

and investigate its temporal development for matter and radiation dominated universes.

(a) Calculate the Christoffel symbols,

Γx
tx = Γy

ty = Γz
tz =

ȧ

a
, Γt

xx = Γt
yy = Γt

zz = aȧ .

(b) Calculate the Ricci tensor and the Ricci scalar,

Rt
t = −3

ä

a
, Rx

x = Ry
y = Rz

z = − ä

a
− 2

ȧ2

a2
.

(c) Write down the t
t component of the Einstein equation with perfect fluid,

3
ȧ2

a2
= κε .

(d) Write down the energy conservation equation,

dV

V
= − dε

(ε + p)
⇒ 3 ln(a) = −

∫
dε

(ε + p)
.

(e) Integrate the equations for a matter dominated universe (p = 0, ε = µ),

µa3 = const , a =∝ t2/3 .

(f) Integrate the equations for a radiation dominated universe (p = ε
3 ),

εa4 = const, a =∝ t1/2

4. Calculate the volumes of the closed and open universes.

4


