
General Relativity. Examination problems.

Fall 2015.

For instructions see the course homepage at

http://owww.phys.au.dk/~fedorov/GTR

1 Part 1 (of 4)

1. Let Λa
b be the matrix of the Lorentz transformation from an inertial frame K to an intertial

frame K ′. What is the matrix of the Lorentz transformation from K ′ to K?

2. Two vectors A and B have equal components, Aa = Ba, in a given frame. Do they have
equal components in other frames? Give the answers for special and general relativity.

3. Two close events in special relativity are separated by i) a time-like interval, ds2 > 0, ii) a
space-like interval, ds2 < 0. Is there a frame where the two events are I) simultaneous, II)
happen at the same spatial point?

4. Consider a 3-dimensional Euclidean space with polar coordinates. Is there a difference
between vectors with index up and vectors with index down?

5. Consider a tensor which is antisymmetric, Fab = −Fba, in a given frame. Is it antisymmetric
in other frames? What can one say about the symmetry of the tensor F ab (that is, with
indexes up)?

6. A vector has zero components in one frame. Are the components zero in all other frames?
Give the answers for special and general relativity.

7. Suppose that the relative velocity v between two inertial frames is close to the speed of
light, v = c − ε, where 0 < ε � c. Derive the formulas for the Lorentz contraction and
time-dilation in the lowest order in ε. What are the relative errors of these formulas when
ε = 0.1c?

8. Argue that the space of special relativity is a metric space with the metric tensor ηab (a
diagonal tensor where the components of the main diagonal are equal (1,−1,−1,−1)).

9. In special relativity: argue that a free electron can neither absorb nor emit a photon.

10. Consider a 3-dimensional Euclidean space with Cartesian coordinates. Is there a difference
between vectors with index up and index down?

11. Consider a vector Aa. Is the four-component object
{

1
A0 , 1

A1 , 1
A2 , 1

A3

}
a vector?

12. Two close events in special relativity are separated by a zero interval, ds2 = 0. What can
be said about the spatial and temporal separation of the two events?

13. Consider a tensor Xa
bc. Is the quantity Yc = Xa

ac a tensor?

14. Consider a tensor which is symmetric, Sab = Sba, in a given frame. Is it symmetric in other
frames? What can one say about the symmetry of the tensor Sab (with indexes up)?
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15. Calculate the energy that is required to accelerate a particle with mass m > 0 from speed
v to speed v + δv where δv � v. Argue that it would take an infinite amount of energy to
accelerate the particle to the speed of light.

2 Part 2 (of 4)

1. In some inertial frame the motion of a particle is described by the equations

x(t) = at + b sin(ωt), y(t) = b cos(ωt), z(t) = 0, |bω| < 1 .

Compute the components of particle’s four-velocity and four-acceleration.

2. Calculate the Riemann tensor for a cylinder. You are free to choose the system of coordinates.

3. In a two-dimensional Euclidean space with polar coordinates consider a tensor Aab with the
following components: Arr = r2, Arθ = r sin θ, Aθr = r cos θ, Aθθ = tan θ. Compute the
covariant derivatives Aab

;c (in polar coordinates).

4. Differentiate a determinant of a 2 × 2 matrix and show that it satisfies the equation g,c =
ggabgba,c.

5. Consider a space with coordinates (u, v, w, p) and metric ds2 = 2dudv−dwdw−dpdp. Show
that this is Minkowski space.

6. In special relativity: consider the 4-velocity ua = dxa/ds and the 3-velocity ~v = d~r/dt of a
moving body with coordinates xa = {t, ~r}. Express ua in terms of ~v.

7. Calculate the components of gab for a sphere in polar coordinates.

8. In a two-dimensional Euclidean space with polar coordinates the components of a vector
field are given as Ar = 1, Aθ = 0. Compute Aa

;b;c.

9. Prove that Γa
ab = 1

2 (ln |g|),b.

10. Find out how the expression Aa
,b transforms under a change of coordinates. Does it obey

the tensor transformation law?

11. Show that the Christoffel symbol Γa
bc is symmetric under exchange of the lower indices.

12. Consider a scalar function of coordinates φ(x). Find out whether the objects ∂φ
∂xa and ∂2φ

∂xa∂xb

are tensors in special and general relativity.

13. Prove that in a locally inertial frame

Rabcd,e =
1
2
(gad,bce − gac,bde + gbc,ade − gbd,ace) .

14. Starting with Minkowski metric ds2 = ηabdxadxb, show that the coordinate transformation
r =

√
x2 + y2 + z2, θ = arccos(z/r), ϕ = arctan(y/x) leads to metric ds2 = dt2 − dr2 −

r2(dθ2 + sin2 θdϕ2).

3 Part 3 (of 4)

1. A traveller starts from rest at the Earth and moves along a line with constant acceleration
a with respect to the momentarily co-moving inertial frame (also called the instantaneous
rest frame). Argue that light signals sent from the Earth after time t = c/a will never reach
the receding traveller.
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2. The non-relativistic Lagrangian of a free particle with mass m is given as L = 1
2m~v2, where

~v is the particle’s velocity. What is the corresponding relativistic Lagrangian? What is the
connection between the non-relativistic and the relativistic Lagrangians?

3. The metric in a space is given as

ds2 = (1 + 2φ)dt2 − (1− 2φ)(dx2 + dy2 + dz2) ,

where |φ| � 1 everywhere. To first order in φ compute gab.

4. Prove that in a locally inertial frame

Rabcd,e =
1
2
(gad,bce − gac,bde + gbc,ade − gbd,ace) .

5. Calculate the components of the Riemann tensor for a 2-dimensional Euclidean space with
polar coordinates.

6. Assume that a geodesic is a curve with extremal measure, that is, a curve along which

δ

∫
ds = 0 .

Derive the geodesic equation. Prove that the covariant differential of the velocity of a particle
moving along the geodesic is zero, Dua = 0.

7. Calculate—using the metric—the length of a circle of constant coordinate θ on a sphere of
radius r.

8. The metric in a space is given as

ds2 = (1 + 2φ)dt2 − (1− 2φ)(dx2 + dy2 + dz2) ,

where |φ| � 1 everywhere. To first order in φ compute the Christoffel symbols. Assume
that φ is a function of (t, x, y, z).

9. Assume that the components of the metric tensor gab do not depend on the coordinate x1.
Show that for a free moving body the component u1 of the body’s four-velocity is then
conserved.

10. Show that from the Maxwell equation F ba
;b = 4πja it follows that ja

;a = 0. Hint: prove first
that

√
−gAc

;c = (
√
−gAc),c.

11. Use the definition of the invariant volume element (called covariant in lecture notes) to
calculate the proper area of a sphere.

12. Show that for an equatorial orbit in the Schwarzschild metric the quantity u2
ϕ is conserved

(where uϕ is the ϕ−component of the four-velocity, ua = dxa/ds).

4 Part 4 (of 4)

1. In special relativity: Consider a massless scalar field Φ with the energy-momentum tensor

Tab =
1
4π

(
Φ,aΦ,b −

1
2
gabg

cdΦ,cΦ,d

)
.

From the equation T ab
,b = 0 derive the equations of motion for the field Φ. Now generalise

your answer to general relativity.
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2. The space is everywhere isotropic and empty (contains no matter at all). Show that it is
Minkowski space. Hint: consider the Friedman equations.

3. In the weak field limit show that the metric tensor in the form gab = ηab + hab, where
hab 6=yz,zy = 0, hyz = f(t−x), and f is an arbitrary function, satisfies the linearized Einstein
equation in vacuum. Hint: see the gravitational waves chapter.

4. Show that the equatorial orbit in the Schwarzschild metric is stable. Hint: consider an
equatorial orbit with a small perturbation θ = π/2+ δθ; derive the lowest order equation for
the perturbation δθ; show that the perturbation remains small.

5. In Schwarzschild coordinates calculate the period of a circular orbit with radius b of a planet
rotating around a star of mass M . Calculate also the proper period of the orbit. Compare
with Newtonian result. Hint: recall the Kepler’s law exercise.

6. The metric in a space is given as

ds2 = (1 + 2φ)dt2 − (1− 2φ)(dx2 + dy2 + dz2) ,

where |φ| � 1 everywhere. At a given point (t0, x0, y0, z0) find a coordinate transformation
to a locally inertial frame, to first order in φ. At what rate does this frame accelerates with
respect to the original coordinates, again to the first order in φ?

7. A rocket fell through the gravitational radius of a black hole and tries to escape back. Show
that it will reach the center within the proper time s ≤ πM no matter how powerful the rocket
engines are. Hints: argue that for a body under the Schwarzschild radius always dr < 0; from
the condition gabu

aub = 1 prove the following inequality under the Schwarzschild radius,(
2M

r
− 1

)−1 (
dr

ds

)2

> 1 ,

from which you can obtain the limit on the proper velocity dr/ds; Maxima claims that∫
dr√
1
r − 1

= −r

√
1
r
− 1− arctan

√
1
r
− 1 .

8. In Newtonian mechanics consider a planet rotating around a star which is slightly non-
spherical, such that the classical Newtonian gravitational potential is

φ(r) = −M

r
− AM

r3
, (1)

where the small parameter A describes the non-sphericity of the star. In Newtonian me-
chanics calculate the precession of the perihelion of the orbit of the planet. For simplicity
you can assume that the orbit is nearly circular.

9. In the weak field limit show that the metric tensor in the form gab = ηab + hab, where
hyz = A sinω(t − x), htt = 2f(t − x), htx = −f(t − x), all other hab = 0, f is an arbitrary
function, satisfies the linearized Einstein equation in vacuum. Hint: see the gravitational
waves chapter.

10. Let us define the generalized force Fa acting on a particle with mass m through the equation
of motion mDua/ds = Fa. Recall that from uaua = 1 it follows that Duaua = 0 and
therefore Faua = 0. Show that the electromagnetic force satisfies this condition. Show that
a force in the form Fa = −∂V/∂xa, where V is a scalar function of coordinates, generally
does not satisfy this condition. What would a discovery of such force mean?
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11. Consider a nearly circular orbit of a planet around a star in Newtonian mechanics and in
General Relativity. Derive the equation for a small radial perturbation of the orbit and find
its angular period. Relate to the post-Newtonian perihelion precession.

12. Consider a flat radiation-dominated Friedman universe. Show that at early times it expands
as a ∝

√
t, where a is the scale parameter and t is coordinate time.

13. In Schwarzschild coordinates {t, r} the half-life of an elementary particle measured at rest
at large distance from the center is ∆t. What is its half-life at rest at a distance r from the
center? What is the proper half-life?
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