General Relativity. Examination problems. Fall 2015.

For instructions see the course homepage at

http://owww.phys.au.dk/~fedorov/GTR

1 Part 1 (of 4)

- 1. Let Λ_b^a be the matrix of the Lorentz transformation from an inertial frame K to an intertial frame K'. What is the matrix of the Lorentz transformation from K' to K?
- 2. Two vectors A and B have equal components, $A^a = B^a$, in a given frame. Do they have equal components in other frames? Give the answers for special and general relativity.
- 3. Two close events in special relativity are separated by i) a time-like interval, $ds^2 > 0$, ii) a space-like interval, $ds^2 < 0$. Is there a frame where the two events are I) simultaneous, II) happen at the same spatial point?
- 4. Consider a 3-dimensional Euclidean space with polar coordinates. Is there a difference between vectors with index up and vectors with index down?
- 5. Consider a tensor which is antisymmetric, $F_{ab} = -F_{ba}$, in a given frame. Is it antisymmetric in other frames? What can one say about the symmetry of the tensor F^{ab} (that is, with indexes up)?
- 6. A vector has zero components in one frame. Are the components zero in *all* other frames? Give the answers for special and general relativity.
- 7. Suppose that the relative velocity v between two inertial frames is close to the speed of light, $v = c \varepsilon$, where $0 < \varepsilon \ll c$. Derive the formulas for the Lorentz contraction and time-dilation in the lowest order in ε . What are the relative errors of these formulas when $\varepsilon = 0.1c$?
- 8. Argue that the space of special relativity is a metric space with the metric tensor η_{ab} (a diagonal tensor where the components of the main diagonal are equal (1, -1, -1, -1)).
- 9. In special relativity: argue that a free electron can neither absorb nor emit a photon.
- 10. Consider a 3-dimensional Euclidean space with Cartesian coordinates. Is there a difference between vectors with index up and index down?
- 11. Consider a vector A^a . Is the four-component object $\left\{\frac{1}{A^0}, \frac{1}{A^1}, \frac{1}{A^2}, \frac{1}{A^3}\right\}$ a vector?
- 12. Two close events in special relativity are separated by a zero interval, $ds^2 = 0$. What can be said about the spatial and temporal separation of the two events?
- 13. Consider a tensor X_{bc}^a . Is the quantity $Y_c = X_{ac}^a$ a tensor?
- 14. Consider a tensor which is symmetric, $S_{ab} = S_{ba}$, in a given frame. Is it symmetric in other frames? What can one say about the symmetry of the tensor S^{ab} (with indexes up)?

15. Calculate the energy that is required to accelerate a particle with mass m > 0 from speed v to speed $v + \delta v$ where $\delta v \ll v$. Argue that it would take an infinite amount of energy to accelerate the particle to the speed of light.

2 Part 2 (of 4)

1. In some inertial frame the motion of a particle is described by the equations

 $x(t) = at + b\sin(\omega t), \ y(t) = b\cos(\omega t), \ z(t) = 0, \ |b\omega| < 1.$

Compute the components of particle's four-velocity and four-acceleration.

- 2. Calculate the Riemann tensor for a cylinder. You are free to choose the system of coordinates.
- 3. In a two-dimensional Euclidean space with polar coordinates consider a tensor A^{ab} with the following components: $A^{rr} = r^2$, $A^{r\theta} = r \sin \theta$, $A^{\theta r} = r \cos \theta$, $A^{\theta \theta} = \tan \theta$. Compute the covariant derivatives $A^{ab}_{:c}$ (in polar coordinates).
- 4. Differentiate a determinant of a 2×2 matrix and show that it satisfies the equation $g_{,c} = gg^{ab}g_{ba,c}$.
- 5. Consider a space with coordinates (u, v, w, p) and metric $ds^2 = 2dudv dwdw dpdp$. Show that this is Minkowski space.
- 6. In special relativity: consider the 4-velocity $u^a = dx^a/ds$ and the 3-velocity $\vec{v} = d\vec{r}/dt$ of a moving body with coordinates $x^a = \{t, \vec{r}\}$. Express u^a in terms of \vec{v} .
- 7. Calculate the components of g^{ab} for a sphere in polar coordinates.
- 8. In a two-dimensional Euclidean space with polar coordinates the components of a vector field are given as $A^r = 1$, $A^{\theta} = 0$. Compute $A^a_{:b:c}$.
- 9. Prove that $\Gamma^a_{ab} = \frac{1}{2} (\ln |g|)_{,b}$.
- 10. Find out how the expression $A^a_{,b}$ transforms under a change of coordinates. Does it obey the tensor transformation law?
- 11. Show that the Christoffel symbol Γ_{bc}^a is symmetric under exchange of the lower indices.
- 12. Consider a scalar function of coordinates $\phi(x)$. Find out whether the objects $\frac{\partial \phi}{\partial x^a}$ and $\frac{\partial^2 \phi}{\partial x^a \partial x^b}$ are tensors in special and general relativity.
- 13. Prove that in a locally inertial frame

$$R_{abcd,e} = \frac{1}{2}(g_{ad,bce} - g_{ac,bde} + g_{bc,ade} - g_{bd,ace})$$

14. Starting with Minkowski metric $ds^2 = \eta_{ab}dx^a dx^b$, show that the coordinate transformation $r = \sqrt{x^2 + y^2 + z^2}$, $\theta = \arccos(z/r)$, $\varphi = \arctan(y/x)$ leads to metric $ds^2 = dt^2 - dr^2 - r^2(d\theta^2 + \sin^2\theta d\varphi^2)$.

3 Part 3 (of 4)

1. A traveller starts from rest at the Earth and moves along a line with constant acceleration a with respect to the momentarily co-moving inertial frame (also called the instantaneous rest frame). Argue that light signals sent from the Earth after time t = c/a will never reach the receding traveller.

- 2. The non-relativistic Lagrangian of a free particle with mass m is given as $L = \frac{1}{2}m\vec{v}^2$, where \vec{v} is the particle's velocity. What is the corresponding relativistic Lagrangian? What is the connection between the non-relativistic and the relativistic Lagrangians?
- 3. The metric in a space is given as

$$ds^{2} = (1+2\phi)dt^{2} - (1-2\phi)(dx^{2} + dy^{2} + dz^{2}),$$

where $|\phi| \ll 1$ everywhere. To first order in ϕ compute g^{ab} .

4. Prove that in a locally inertial frame

$$R_{abcd,e} = \frac{1}{2} (g_{ad,bce} - g_{ac,bde} + g_{bc,ade} - g_{bd,ace}) \,.$$

- 5. Calculate the components of the Riemann tensor for a 2-dimensional Euclidean space with polar coordinates.
- 6. Assume that a geodesic is a curve with extremal measure, that is, a curve along which

$$\delta \int ds = 0 \,.$$

Derive the geodesic equation. Prove that the covariant differential of the velocity of a particle moving along the geodesic is zero, $Du^a = 0$.

- 7. Calculate—using the metric—the length of a circle of constant coordinate θ on a sphere of radius r.
- 8. The metric in a space is given as

$$ds^{2} = (1+2\phi)dt^{2} - (1-2\phi)(dx^{2} + dy^{2} + dz^{2}),$$

where $|\phi| \ll 1$ everywhere. To first order in ϕ compute the Christoffel symbols. Assume that ϕ is a function of (t, x, y, z).

- 9. Assume that the components of the metric tensor g_{ab} do not depend on the coordinate x^1 . Show that for a free moving body the component u_1 of the body's four-velocity is then conserved.
- 10. Show that from the Maxwell equation $F^{ba}_{;b} = 4\pi j^a$ it follows that $j^a_{;a} = 0$. Hint: prove first that $\sqrt{-g}A^c_{;c} = (\sqrt{-g}A^c)_{,c}$.
- 11. Use the definition of the invariant volume element (called covariant in lecture notes) to calculate the proper area of a sphere.
- 12. Show that for an equatorial orbit in the Schwarzschild metric the quantity u_{φ}^2 is conserved (where u^{φ} is the φ -component of the four-velocity, $u^a = dx^a/ds$).

4 Part 4 (of 4)

1. In special relativity: Consider a massless scalar field Φ with the energy-momentum tensor

$$T_{ab} = \frac{1}{4\pi} \left(\Phi_{,a} \Phi_{,b} - \frac{1}{2} g_{ab} g^{cd} \Phi_{,c} \Phi_{,d} \right) \,.$$

From the equation $T^{ab}_{,b} = 0$ derive the equations of motion for the field Φ . Now generalise your answer to general relativity.

- 2. The space is everywhere isotropic and empty (contains no matter at all). Show that it is Minkowski space. Hint: consider the Friedman equations.
- 3. In the weak field limit show that the metric tensor in the form $g_{ab} = \eta_{ab} + h_{ab}$, where $h_{ab\neq yz,zy} = 0$, $h_{yz} = f(t-x)$, and f is an arbitrary function, satisfies the linearized Einstein equation in vacuum. Hint: see the gravitational waves chapter.
- 4. Show that the equatorial orbit in the Schwarzschild metric is stable. Hint: consider an equatorial orbit with a small perturbation $\theta = \pi/2 + \delta\theta$; derive the lowest order equation for the perturbation $\delta\theta$; show that the perturbation remains small.
- 5. In Schwarzschild coordinates calculate the period of a circular orbit with radius b of a planet rotating around a star of mass M. Calculate also the proper period of the orbit. Compare with Newtonian result. Hint: recall the Kepler's law exercise.
- 6. The metric in a space is given as

$$ds^{2} = (1+2\phi)dt^{2} - (1-2\phi)(dx^{2} + dy^{2} + dz^{2}),$$

where $|\phi| \ll 1$ everywhere. At a given point (t_0, x_0, y_0, z_0) find a coordinate transformation to a locally inertial frame, to first order in ϕ . At what rate does this frame accelerates with respect to the original coordinates, again to the first order in ϕ ?

7. A rocket fell through the gravitational radius of a black hole and tries to escape back. Show that it will reach the center within the proper time $s \leq \pi M$ no matter how powerful the rocket engines are. Hints: argue that for a body under the Schwarzschild radius always dr < 0; from the condition $g_{ab}u^a u^b = 1$ prove the following inequality under the Schwarzschild radius,

$$\left(\frac{2M}{r} - 1\right)^{-1} \left(\frac{dr}{ds}\right)^2 > 1$$

from which you can obtain the limit on the proper velocity dr/ds; Maxima claims that

$$\int \frac{dr}{\sqrt{\frac{1}{r}-1}} = -r\sqrt{\frac{1}{r}-1} - \arctan\sqrt{\frac{1}{r}-1}.$$

8. In Newtonian mechanics consider a planet rotating around a star which is slightly nonspherical, such that the classical Newtonian gravitational potential is

$$\phi(r) = -\frac{M}{r} - \frac{AM}{r^3}, \qquad (1)$$

where the small parameter A describes the non-sphericity of the star. In Newtonian mechanics calculate the precession of the perihelion of the orbit of the planet. For simplicity you can assume that the orbit is nearly circular.

- 9. In the weak field limit show that the metric tensor in the form $g_{ab} = \eta_{ab} + h_{ab}$, where $h_{yz} = A \sin \omega (t-x)$, $h_{tt} = 2f(t-x)$, $h_{tx} = -f(t-x)$, all other $h_{ab} = 0$, f is an arbitrary function, satisfies the linearized Einstein equation in vacuum. Hint: see the gravitational waves chapter.
- 10. Let us define the generalized force \mathcal{F}_a acting on a particle with mass m through the equation of motion $mDu_a/ds = \mathcal{F}_a$. Recall that from $u^a u_a = 1$ it follows that $Du_a u^a = 0$ and therefore $\mathcal{F}_a u^a = 0$. Show that the electromagnetic force satisfies this condition. Show that a force in the form $\mathcal{F}_a = -\partial V/\partial x^a$, where V is a scalar function of coordinates, generally does not satisfy this condition. What would a discovery of such force mean?

- 11. Consider a nearly circular orbit of a planet around a star in Newtonian mechanics and in General Relativity. Derive the equation for a small radial perturbation of the orbit and find its angular period. Relate to the post-Newtonian perihelion precession.
- 12. Consider a flat radiation-dominated Friedman universe. Show that at early times it expands as $a \propto \sqrt{t}$, where a is the scale parameter and t is coordinate time.
- 13. In Schwarzschild coordinates $\{t, r\}$ the half-life of an elementary particle measured at rest at large distance from the center is Δt . What is its half-life at rest at a distance r from the center? What is the proper half-life?