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Spherically symmetric static solution
Schwarzschild metric

Schwarzschild metric describes the gravitational field outside a non-rotating spherical body like a
star, planet, or black hole. It is a static, spherically symmetric solution of the vacuum Einstein
equation (Rgp = 0).

The spherically symmetric static metric is assumed to be in the form

ds* = A(r)dt* — B(r)dr* — r?(df* + sin® 0d¢?) , (1)

where A and B are some yet unknown functions of radius . Calculating the Christoffel symbols!
and the Ricci tensor? and then integrating® the vacuum Einstein equations, R,, = 0, gives the
famous Schwarzschild metric,

1
ds? = <1 _ E) a2 — <1 — E) dr® — r2(d6? + sin® 0d¢?) . (2)
r r

The integration constant R is determined from the Newtonian limit*, R = 2GM/c?, where M
is the mass of the central body (R = 2M in the units G = ¢ = 1). It is called gravitational or
Schwarzschild radius. The gravitational radius for the Earth is about 9mm, for the Sun — about
3km.

Motion in the Schwarzschild metric

Massive bodies. Massive bodies move along geodesics, described by the geodesic equation

d 1
E(gabub) = §gbc,aubuc . (3)

For a = t,0, ¢ the corresponding equations in the Schwarzschild metric (2) are

d oM\ dt] . d [ ,d0] . dp\?>  d [, . 5, do]
T [(1 . )ds]—O, R [r ds]—r sm@cos@(ds ;g |7 sin Gds =0. (4)

The r-equation can be conveniently obtained by dividing the Schwarzschild metric (2) by ds?,
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Considering equatorial motion, the first three equations can be integrated as

T 5 do 2M\ dt
0 2’ " ds T ( r ds ’ (6)

where J and F are constants. The fourth equation then becomes

2
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3 Making a linear combination BR¢t + ARy = 0 gives AAB+ AB' =0 = A7 + %, =0 = AB=1. Then

Rgg = 0 gives B = ﬁ, A=1- %, where R is an integration constant.
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where 7' = g7. Traditionally one makes a variable substitution r = 1 Ju,
(1 —2Mu) = E* — J*u"? — J*u*(1 — 2Mu), (8)
and then differentiates the equation once. Assuming u’ # 0 this gives
u"+u:%+3Mu2. 9)

In this form the last term is a relativistic correction to the otherwise non-relativistic equation.

Light rays. The rays of light travel along the null-geodesics where ds?> = 0. Consequently

instead of ds one needs to use some parameter d\ in the geodesic equations %—ﬁa = 0, where
k* = % and also the unity in the left-hand side of equation (5) has to be substituted with zero.

This immediately leads to the equation
u” 4+ u = 3Mu? | (10)

which describes the trajectory of a ray of light in the Schwarzschild metric.
In the absence of the central body, M = 0 the space becomes flat, and equation (10) turns into
equation for a straight line.

Exercises

1. (Obligatory) Consider a non-relativistic equatorial (§ = 7/2) motion of a planet with mass
m around a star with mass M described by a Lagrangian®

1 oy mM
L= 5m(7*2 +r2¢?) + —,
.,

Write down the Euler-Lagrange equations,

ooL o
otdq 0q’

for ¢ = r and ¢. Using the first integral 7“2(;5 = J rewrite the r-equation as an equation for
the function u(¢), where u = 1/r, and compare with (9).

2. Show that in Newtonian mechanics an equatorial (§ = w/2) trajectory of a light ray is
described by the equation
' +u=0,
where u = 1 and v/ = g—g.
3. Show that a light ray can travel around a massive star in a circular orbit much like a planet.
Calculate the radius (in Schwarzschild coordinates) of this orbit. Answer: r = 2(2M).

4. (Obligatory) Show, that in the Newtonian limit, goo = 1 + 2¢/c?, the geodesic equation,

du®
ds

b -
= —I'pu’u’,
is consistent with the Newton’s equation of motion,

—

F=-Véo.

— dr

Swhere the dot denotes the temporal derivative, 1 = =



