Spherically symmetric static solution

Schwarzschild metric

Schwarzschild metric describes the gravitational field outside a non-rotating spherical body like a star, planet, or black hole. It is a static, spherically symmetric solution of the vacuum Einstein equation ($R_{a b}=0$).

The spherically symmetric static metric is assumed to be in the form

$$
\begin{equation*}
d s^{2}=A(r) d t^{2}-B(r) d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right), \tag{1}
\end{equation*}
$$

where A and B are some yet unknown functions of radius r. Calculating the Christoffel symbols ${ }^{1}$ and the Ricci tensor ${ }^{2}$ and then integrating ${ }^{3}$ the vacuum Einstein equations, $R_{a b}=0$, gives the famous Schwarzschild metric,

$$
\begin{equation*}
d s^{2}=\left(1-\frac{R}{r}\right) d t^{2}-\left(1-\frac{R}{r}\right)^{-1} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{2}
\end{equation*}
$$

The integration constant R is determined from the Newtonian $\operatorname{limit}^{4}, R=2 G M / c^{2}$, where M is the mass of the central body $(R=2 M$ in the units $G=c=1)$. It is called gravitational or Schwarzschild radius. The gravitational radius for the Earth is about 9 mm , for the Sun - about 3 km .

Motion in the Schwarzschild metric

Massive bodies. Massive bodies move along geodesics, described by the geodesic equation

$$
\begin{equation*}
\frac{d}{d s}\left(g_{a b} u^{b}\right)=\frac{1}{2} g_{b c, a} u^{b} u^{c} . \tag{3}
\end{equation*}
$$

For $a=t, \theta, \phi$ the corresponding equations in the Schwarzschild metric (2) are

$$
\begin{equation*}
\frac{d}{d s}\left[\left(1-\frac{2 M}{r}\right) \frac{d t}{d s}\right]=0, \frac{d}{d s}\left[r^{2} \frac{d \theta}{d s}\right]=r^{2} \sin \theta \cos \theta\left(\frac{d \phi}{d s}\right)^{2}, \frac{d}{d s}\left[r^{2} \sin ^{2} \theta \frac{d \phi}{d s}\right]=0 \tag{4}
\end{equation*}
$$

The r-equation can be conveniently obtained by dividing the Schwarzschild metric (2) by $d s^{2}$,

$$
\begin{equation*}
1=\left(1-\frac{2 M}{r}\right)\left(\frac{d t}{d s}\right)^{2}-\left(1-\frac{2 M}{r}\right)^{-1}\left(\frac{d r}{d s}\right)^{2}-r^{2}\left[\left(\frac{d \theta}{d s}\right)^{2}+\sin ^{2} \theta\left(\frac{d \phi}{d s}\right)^{2}\right] \tag{5}
\end{equation*}
$$

Considering equatorial motion, the first three equations can be integrated as

$$
\begin{equation*}
\theta=\frac{\pi}{2}, \quad r^{2} \frac{d \phi}{d s}=J, \quad\left(1-\frac{2 M}{r}\right) \frac{d t}{d s}=E \tag{6}
\end{equation*}
$$

where J and E are constants. The fourth equation then becomes

$$
\begin{equation*}
1=\frac{E^{2}}{1-\frac{2 M}{r}}-\frac{\frac{J^{2}}{r^{4}} r^{\prime 2}}{1-\frac{2 M}{r}}-\frac{J^{2}}{r^{2}}, \tag{7}
\end{equation*}
$$

[^0]where $r^{\prime} \equiv \frac{d r}{d \phi}$. Traditionally one makes a variable substitution $r=1 / u$,
\[

$$
\begin{equation*}
(1-2 M u)=E^{2}-J^{2} u^{2}-J^{2} u^{2}(1-2 M u) \tag{8}
\end{equation*}
$$

\]

and then differentiates the equation once. Assuming $u^{\prime} \neq 0$ this gives

$$
\begin{equation*}
u^{\prime \prime}+u=\frac{M}{J^{2}}+3 M u^{2} \tag{9}
\end{equation*}
$$

In this form the last term is a relativistic correction to the otherwise non-relativistic equation.
Light rays. The rays of light travel along the null-geodesics where $d s^{2}=0$. Consequently instead of $d s$ one needs to use some parameter $d \lambda$ in the geodesic equations $\frac{D k^{a}}{d \lambda}=0$, where $k^{a}=\frac{d x^{a}}{d \lambda}$ and also the unity in the left-hand side of equation (5) has to be substituted with zero. This immediately leads to the equation

$$
\begin{equation*}
u^{\prime \prime}+u=3 M u^{2} \tag{10}
\end{equation*}
$$

which describes the trajectory of a ray of light in the Schwarzschild metric.
In the absence of the central body, $M=0$ the space becomes flat, and equation (10) turns into equation for a straight line.

Exercises

1. (Obligatory) Consider a non-relativistic equatorial $(\theta=\pi / 2)$ motion of a planet with mass m around a star with mass M described by a Lagrangian ${ }^{5}$

$$
\mathcal{L}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)+\frac{m M}{r},
$$

Write down the Euler-Lagrange equations,

$$
\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial \dot{q}}=\frac{\partial \mathcal{L}}{\partial q}
$$

for $q=r$ and ϕ. Using the first integral $r^{2} \dot{\phi}=J$ rewrite the r-equation as an equation for the function $u(\phi)$, where $u=1 / r$, and compare with (9).
2. Show that in Newtonian mechanics an equatorial $(\theta=\pi / 2)$ trajectory of a light ray is described by the equation

$$
u^{\prime \prime}+u=0
$$

where $u \doteq \frac{1}{r}$ and $u^{\prime} \doteq \frac{d u}{d \phi}$.
3. Show that a light ray can travel around a massive star in a circular orbit much like a planet. Calculate the radius (in Schwarzschild coordinates) of this orbit. Answer: $r=\frac{3}{2}(2 M)$.
4. (Obligatory) Show, that in the Newtonian limit, $g_{00}=1+2 \phi / c^{2}$, the geodesic equation,

$$
\frac{d u^{a}}{d s}=-\Gamma_{b c}^{a} u^{b} u^{c}
$$

is consistent with the Newton's equation of motion,

$$
\ddot{\vec{r}}=-\vec{\nabla} \phi .
$$

[^1]
[^0]: ${ }^{1} \Gamma_{r r}^{r}=\frac{1}{2} \frac{B^{\prime}}{B}, \Gamma_{t r}^{t}=\frac{1}{2} \frac{A^{\prime}}{A}, \Gamma_{t t}^{r}=\frac{1}{2} \frac{A^{\prime}}{B}, \Gamma_{\theta r}^{\theta}=\frac{1}{r}, \Gamma_{\theta \theta}^{r}=-\frac{r}{B}, \Gamma_{\phi r}^{\phi}=\frac{1}{r}, \Gamma_{\phi \phi}^{r}=-\frac{r \sin ^{2} \theta}{B}, \Gamma_{\phi \theta}^{\phi}=\cot \theta, \Gamma_{\phi \phi}^{\theta}=$ $-\sin \theta \cos \theta$.
 ${ }^{2} R_{t t}=\frac{A^{\prime \prime}}{2 B}+\frac{A^{\prime}}{B}\left(\frac{1}{r}-\frac{B^{\prime}}{4 B}-\frac{A^{\prime}}{4 A}\right), R_{\theta \theta}=1-\left(\frac{r}{B}\right)^{\prime}-\frac{1}{2}\left(\frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}\right) \frac{r}{B}, R_{r r}=-\frac{A^{\prime \prime}}{2 A}+\frac{A^{\prime} B^{\prime}}{4 A B}+\frac{A^{\prime 2}}{4 A^{2}}+\frac{B^{\prime}}{r B}$.
 ${ }^{3}$ Making a linear combination $B R_{t t}+A R_{r r}=0$ gives $A^{\prime} B+A B^{\prime}=0 \Rightarrow \frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}=0 \Rightarrow A B=1$. Then $R_{\theta \theta}=0$ gives $B=\frac{1}{1-\frac{R}{r}}, A=1-\frac{R}{r}$, where R is an integration constant.
 ${ }^{4} g_{00} \xrightarrow{r \rightarrow \infty} 1+2 \phi \stackrel{r}{=} 1-2 \frac{G M}{r}$

[^1]: ${ }^{5}$ where the dot denotes the temporal derivative, $\dot{r} \equiv \frac{d r}{d t}$.

