note8 [September 23, 2009]

Newtonian limit
Newtonian gravitation

The Newton’s law of gravitation states that two
particles with masses m and M located at a relative
distance r attract each other with the force

: (1)

where G =~ 6.67 x 107! Nm?kg=? is the gravita-
tional constant (first measured by Cavendish).

The force is apparently conservative and allows
potential formulation: the body M creates a (non-
relativistic) gravitational potential ¢,

GM
¢(F) =TT

r

(2)

in which the particle m acquires a potential energy
m¢ with the corresponding force

F=—-mVé. (3)

The potential (2) satisfies the Poisson equation!

(4)

If instead of a single mass with density M4 (7)
there is a distribution of masses with density pu(7)
the gravitational potential created by these masses
apparently satisfies the Poisson equation

V2p(7) = 4nGM (7).

V2 = 4nGu. (5)

Equation (3) can be cast into a variational form
with the action
Lo 9 2
dt MV — meo — mc

= —mc/dt(c—;—z-i-%)-

Comparing with S = —mec [ ds we get (squaring
and dropping terms negligible in the limit ¢ — o00)

S =

(6)

2
ds? = (1 + —f) Adt* — di*. (7)
(&

Thus in the Newtonian limit the metric tensor
can be approximated? by gay = Nap + hap, Where

w2l = —ans(7).

2 where we have neglected the terms Jap, o =1,2,3
since their contribution to ds? is not multiplied by ¢2 and is
thus negligible compared to the contribution from goo.

Nap 1s the Minkowski metric tensor and hgp is a
small correction, and the ggp component is given as

2¢
900:1+§,

(8)

where ¢ satisfies the Poisson equation (5).

Newtonian limit of general relativity

For a distribution of (otherwise non-interacting)
masses with mass density wp(7) the energy-
momentum tensor is

9)

In the Newtonian limit, where all fields are weak
and all velocities are small, u, = {1,0,0,0}, only
the g9 component of the energy-momentum tensor
is non-vanishing,

Top = pUgUp -

Too = (10)

Therefore we shall only consider the oo component
of the Einstein’s equation,

1 1
Roo = k(Too — 5900T) = SfH-

(11)

In the slow-weak limit all second order terms and
temporal derivatives must be neglected altogether.
The gp component of the Ricci tensor then reduces
to

Roo = RgaO = Fgo,a (12)

where the Greek symbols run over 1,2, 3.
Assuming gog = 1+ 2¢ and dropping the tempo-
ral derivatives, the Christoffel symbol becomes

[Go = =9, (13)

The Ricci tensor in the same limit is given as

Rog = —¢3 = V36, (14)
The Einstein equation thus turns into the Poisson’s
equation

1
Vi = o hH (15)
which is equivalent to the Newtonian theory if we
put
_ 8nG
=—.

K (16)
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Gravitational waves

In a weak gravitational field the space-time is al-
most flat and the metric tensor g, is equal to the
flat metric 745 plus a small correction hgp,

Gab = Nab + Na - (17)

The Riemann tensor to the lowest order in hy is
1
Rabcd = §(had,bc + hbc,ad - hac,bd - hbd,ac)- (18)

If we choose coordinates such that
1
(1 = 3h8)" = 0, (19)

the Ricci tensor is simply

L, e
Ruy = =5hic (20)

and the vacuum Einstein’s equations turn into the
ordinary wave equation,

82
(@—A) habzo.

The intensity of gravitational radiation by a sys-
tem of slowly moving bodies is determined by its
quadrupole moment Do,z

dE G 1"

- M( 0p)’ (21)

Exercises

1. Calculate the energy-momentum tensor 7y for
a particle of mass m with the action S =
—-m f ds. Hint: calculate the variation of the
action with respect to dg4, and represent it in
the form 68 = —1 [ T8 gqpds.

2. Dirac’s delta-function §(7) is zero everywhere
except for the origin, where it is infinitely
large, such that

/d%(?) =1.

Show that V21 = —4m4(7)
3. (Obligatory) Show that from the metric (7),

2
ds® = (1 + —f) Adt? — di?
C

it follows, that time runs differently at different
places in a gravitational potential and estimate
the difference in the clock rates at the sea level
and on top of the Everest mountain.



