Matter action in curved space

In general relativity gravitation is the geometry of the curved space-time (the metric tensor) rather than a matter field like the electromagnetic field. The action of the matter ${ }^{1}$ has the same form as in Minkowski space only written in a generally covariant way. The matter then couples to the gravitational field through the metric tensors in the matter action.

Covariant volume element. The volume element $d \Omega \equiv d^{4} x$ is not invariant under a general coordinate transformation. In curved spaces it has to be substituted with a covariant expression, $\sqrt{-g} d \Omega$, where g is the determinant of the metric tensor $g_{a b}$ $(g<0)$.

Indeed the metric tensor transforms as

$$
\begin{equation*}
g_{a b}=\frac{\partial x^{\prime c}}{\partial x^{a}} \frac{\partial x^{\prime d}}{\partial x^{b}} g_{c d}^{\prime} . \tag{1}
\end{equation*}
$$

Taking determinant of both sides gives $g=J^{2} g^{\prime}$, or

$$
\begin{equation*}
\sqrt{-g}=J^{\prime} \sqrt{-g^{\prime}} \tag{2}
\end{equation*}
$$

where $J^{\prime}=\left|\frac{\partial x^{\prime a}}{\partial x^{b}}\right|$ is the Jacobian of the transformation. The 4 -volume transforms as

$$
\begin{equation*}
d \Omega=\left|\frac{\partial x^{a}}{\partial x^{\prime b}}\right| d \Omega^{\prime}=\frac{1}{J^{\prime}} d \Omega^{\prime} . \tag{3}
\end{equation*}
$$

Apparently the combination $\sqrt{-g} d \Omega$ transforms as

$$
\begin{equation*}
\sqrt{-g} d \Omega=J^{\prime} \sqrt{-g^{\prime}} \frac{1}{J^{\prime}} d \Omega^{\prime}=\sqrt{-g^{\prime}} d \Omega^{\prime} \tag{4}
\end{equation*}
$$

and is thus a covariant volume element.

Matter action. The action of the matter in general relativity has the same form as in special relativity, only rewritten, if needed, in a generally covariant way. Particularly, $d \Omega \rightarrow \sqrt{-g} d \Omega$, $\partial^{a} \varphi \rightarrow g^{a b} \partial_{b} \varphi$, and $\partial_{a} A^{b} \rightarrow D_{a} A^{b}$. For example,

$$
\begin{align*}
\int A_{a} j^{a} d \Omega & \rightarrow \int A_{a} j^{a} \sqrt{-g} d \Omega \tag{5}\\
\int \partial^{a} \varphi \partial_{a} \varphi d \Omega & \rightarrow \int g^{a b} \partial_{a} \varphi \partial_{b} \varphi \sqrt{-g} d \Omega \tag{6}\\
\int F^{a b} F_{a b} d \Omega & \rightarrow \int F^{a b} F_{a b} \sqrt{-g} d \Omega \tag{7}
\end{align*}
$$

[^0]
Energy-momentum tensor of matter

The variation of the matter action,

$$
\begin{equation*}
S_{m}=\int \mathcal{L} \sqrt{-g} d \Omega \tag{8}
\end{equation*}
$$

under the variation $\delta g^{a b}$ can be written in terms of a symmetric tensor $T_{a b}$,

$$
\begin{align*}
\delta S_{m} & \doteq \frac{1}{2} \int T_{a b} \delta g^{a b} \sqrt{-g} d \Omega \\
& =-\frac{1}{2} \int T^{a b} \delta g_{a b} \sqrt{-g} d \Omega \tag{9}
\end{align*}
$$

where ${ }^{2}$

$$
\begin{equation*}
\frac{1}{2} \sqrt{-g} T_{a b} \delta g^{a b} \doteq \delta(\sqrt{-g} \mathcal{L}) \tag{10}
\end{equation*}
$$

The tensor $T_{a b}$ is actually the energy-momentum tensor, since in a flat space it satisfies a conservation law. Indeed, consider an infinitesimal coordinate transformation,

$$
\begin{equation*}
x^{a} \rightarrow x^{\prime a}=x^{a}+\epsilon^{a} . \tag{11}
\end{equation*}
$$

The variation of the metric tensor under this transformation can be written as

$$
\begin{equation*}
\delta g^{a b}=\epsilon^{a ; b}+\epsilon^{b ; a}, \delta g_{a b}=-\epsilon_{a ; b}-\epsilon_{b ; a} . \tag{12}
\end{equation*}
$$

The variation of the action then takes the form

$$
\begin{equation*}
\delta S=\int T_{a b} \epsilon^{a ; b} \sqrt{-g} d \Omega \tag{13}
\end{equation*}
$$

Integrating by parts ${ }^{3}$,

$$
\begin{equation*}
\delta S=-\int T_{a ; b}^{b} \epsilon^{a} \sqrt{-g} d \Omega \tag{14}
\end{equation*}
$$

Thus the tensor T_{b}^{a} satisfies the equation

$$
\begin{equation*}
T_{; b}^{a b}=0, \tag{15}
\end{equation*}
$$

which in a flat space turns into the energymomentum conservation equation $T_{, b}^{a b}=0$. One can thus assume that the tensor is proportional to the canonical energy-momentum tensor. Direct calculations show that the proportionality factor is equal unity.

[^1]
Exercises ${ }^{4}$

1. In a curved space the electromagnetic field strength tensor $F_{a b}$ is defined as $F_{a b}=A_{b ; a}-$ $A_{a ; b}$ and the first Maxwell equation is $F_{a b ; c}+$ $F_{b c ; a}+F_{c a ; b}=0$. Show that in the torsion free space of general relativity, $\Gamma_{b c}^{a}=\Gamma_{c b}^{a}$, these equations can still be written as in Minkowski space, $F_{a b}=A_{b, a}-A_{a, b}$ and $F_{a b, c}+F_{b c, a}+$ $F_{c a, b}=0$.
2. (Obligatory) Derive the second Maxwell equation in a curved space,

$$
\left(\sqrt{-g} F^{a b}\right)_{, a}=4 \pi \sqrt{-g} j^{b},
$$

from the action

$$
S=\int\left(-\frac{1}{16 \pi} F^{a b} F_{a b}-A_{a} j^{a}\right) \sqrt{-g} d \Omega .
$$

Show that the equation can also be written as

$$
F_{; a}^{a b}=4 \pi j^{b} .
$$

Hints:
(a) show that $\Gamma_{b a}^{a}=\frac{1}{2 g} g_{, b}=(\ln \sqrt{-g})_{, b}$
(b) show that $F_{; a}^{a b}=\frac{1}{\sqrt{-g}}\left(\sqrt{-g} F^{a b}\right)_{, a}$
3. The Lagrangian density for the electromagnetic field is

$$
\mathcal{L}=-\frac{1}{16 \pi} F_{a b} F^{a b} .
$$

Calculate the corresponding energymomentum tensor using $\frac{1}{2} \sqrt{-g} T_{a b}=\frac{\partial \sqrt{-g} \mathcal{L}}{\partial g^{a b}}$.
Answer: $T_{a b}=\frac{1}{4 \pi}\left(-F_{a c} F_{b}^{c}+\frac{1}{4} F_{c d} F^{c d} g_{a b}\right)$
4. (Obligatory) In the Minkowski space consider a scalar field φ with action

$$
S=\int d \Omega\left(-\frac{1}{2} \varphi^{, a} \varphi_{, a}-\frac{1}{2} m^{2} \varphi^{2}\right)
$$

and calculate its "translationinvariance" energy-momentum tensor,

$$
T_{b}^{a}=\frac{\partial \mathcal{L}}{\partial \varphi_{, a}} \varphi_{, b}-\mathcal{L} \delta_{b}^{a}
$$

[^2]Rewrite the action in a generally covariant form and calculate its "metric" energymomentum tensor,

$$
\frac{1}{2} \sqrt{-g} T_{a b}=\frac{\delta(\sqrt{-g} \mathcal{L})}{\delta g^{a b}}
$$

[^0]: ${ }^{1}$ matter is all fields other than gravitational.

[^1]: ${ }^{2}$ From $g_{a b} g^{b c}=\delta_{a}^{c}$ follows $g_{a b} \delta g^{b c}=-\delta g_{a b} g^{b c}$ and therefore $T_{a b} \delta g^{a b}=-T^{a b} \delta g_{a b}$.
 ${ }^{3}$ the total differential does not contribute, as usual.

[^2]: ${ }^{4}$ notation: ${ }_{; a} \equiv D_{a} \equiv \frac{D}{d x^{a}}$ and,$a \equiv \partial_{a} \equiv \frac{\partial}{d x^{a}}$

