Matter action in curved space

In general relativity gravitation is the geometry of the curved space-time (the metric tensor) rather than a matter field like the electromagnetic field. The action of the matter¹ has the same form as in Minkowski space only written in a generally covariant way. The matter then couples to the gravitational field through the metric tensors in the matter action.

Covariant volume element. The volume element $d\Omega \equiv d^4x$ is not invariant under a general coordinate transformation. In curved spaces it has to be substituted with a covariant expression, $\sqrt{-g}d\Omega$, where g is the determinant of the metric tensor g_{ab} (g < 0).

Indeed the metric tensor transforms as

$$g_{ab} = \frac{\partial x^{\prime c}}{\partial x^a} \frac{\partial x^{\prime d}}{\partial x^b} g_{cd}^{\prime}. \tag{1}$$

Taking determinant of both sides gives $g = J'^2 g'$, or

$$\sqrt{-g} = J'\sqrt{-g'} \tag{2}$$

where $J' = \left| \frac{\partial x'^a}{\partial x^b} \right|$ is the Jacobian of the transformation. The 4-volume transforms as

$$d\Omega = \left| \frac{\partial x^a}{\partial x'^b} \right| d\Omega' = \frac{1}{J'} d\Omega'. \tag{3}$$

Apparently the combination $\sqrt{-g}d\Omega$ transforms as

$$\sqrt{-g}d\Omega = J'\sqrt{-g'}\frac{1}{J'}d\Omega' = \sqrt{-g'}d\Omega', \quad (4)$$

and is thus a covariant volume element.

Matter action. The action of the matter in general relativity has the same form as in special relativity, only rewritten, if needed, in a generally covariant way. Particularly, $d\Omega \to \sqrt{-g}d\Omega$, $\partial^a \varphi \to g^{ab}\partial_b \varphi$, and $\partial_a A^b \to D_a A^b$. For example,

$$\int A_a j^a d\Omega \quad \to \quad \int A_a j^a \sqrt{-g} d\Omega , \qquad (5)$$

$$\int \partial^a \varphi \partial_a \varphi d\Omega \quad \to \quad \int g^{ab} \partial_a \varphi \partial_b \varphi \sqrt{-g} d\Omega , \quad (6)$$

$$\int F^{ab} F_{ab} d\Omega \quad \to \quad \int F^{ab} F_{ab} \sqrt{-g} d\Omega \tag{7}$$

Energy-momentum tensor of matter

The variation of the matter action.

$$S_m = \int \mathcal{L}\sqrt{-g}d\Omega, \tag{8}$$

under the variation δg^{ab} can be written in terms of a symmetric tensor T_{ab} ,

$$\delta S_m \doteq \frac{1}{2} \int T_{ab} \delta g^{ab} \sqrt{-g} d\Omega$$
$$= -\frac{1}{2} \int T^{ab} \delta g_{ab} \sqrt{-g} d\Omega, \qquad (9)$$

 $where^{2}$

$$\frac{1}{2}\sqrt{-g}T_{ab}\delta g^{ab} \doteq \delta(\sqrt{-g}\mathcal{L}). \tag{10}$$

The tensor T_{ab} is actually the energy-momentum tensor, since in a flat space it satisfies a conservation law. Indeed, consider an infinitesimal coordinate transformation,

$$x^{a} \to x^{'a} = x^{a} + \epsilon^{a} \,. \tag{11}$$

The variation of the metric tensor under this transformation can be written as

$$\delta g^{ab} = \epsilon^{a;b} + \epsilon^{b;a}, \delta g_{ab} = -\epsilon_{a;b} - \epsilon_{b;a}.$$
 (12)

The variation of the action then takes the form

$$\delta S = \int T_{ab} \epsilon^{a;b} \sqrt{-g} d\Omega \,. \tag{13}$$

Integrating by parts³,

$$\delta S = -\int T_{a;b}^b \epsilon^a \sqrt{-g} d\Omega \tag{14}$$

Thus the tensor T_b^a satisfies the equation

$$T_{:b}^{ab} = 0,$$
 (15)

which in a flat space turns into the energy-momentum conservation equation $T^{ab}_{,b}=0$. One can thus assume that the tensor is proportional to the canonical energy-momentum tensor. Direct calculations show that the proportionality factor is equal unity.

¹ matter is all fields other than gravitational.

From $g_{ab}g^{bc} = \delta^c_a$ follows $g_{ab}\delta g^{bc} = -\delta g_{ab}g^{bc}$ and therefore $T_{ab}\delta g^{ab} = -T^{ab}\delta g_{ab}$.

³the total differential does not contribute, as usual.

$Exercises^4$

- 1. In a curved space the electromagnetic field strength tensor F_{ab} is defined as $F_{ab} = A_{b;a} A_{a;b}$ and the first Maxwell equation is $F_{ab;c} + F_{bc;a} + F_{ca;b} = 0$. Show that in the torsion free space of general relativity, $\Gamma^a_{bc} = \Gamma^a_{cb}$, these equations can still be written as in Minkowski space, $F_{ab} = A_{b,a} A_{a,b}$ and $F_{ab,c} + F_{bc,a} + F_{ca,b} = 0$.
- 2. (**Obligatory**) Derive the second Maxwell equation in a curved space,

$$\left(\sqrt{-g}F^{ab}\right)_a = 4\pi\sqrt{-g}j^b$$
,

from the action

$$S = \int \left(-\frac{1}{16\pi} F^{ab} F_{ab} - A_a j^a \right) \sqrt{-g} d\Omega.$$

Show that the equation can also be written as

$$F_{\cdot a}^{ab} = 4\pi j^b.$$

Hints:

- (a) show that $\Gamma_{ba}^a = \frac{1}{2a}g_{,b} = (\ln \sqrt{-g})_{,b}$
- (b) show that $F_{;a}^{ab} = \frac{1}{\sqrt{-g}}(\sqrt{-g}F^{ab})_{,a}$
- 3. The Lagrangian density for the electromagnetic field is

$$\mathcal{L} = -\frac{1}{16\pi} F_{ab} F^{ab}.$$

Calculate the corresponding energy-momentum tensor using $\frac{1}{2}\sqrt{-g}T_{ab} = \frac{\partial\sqrt{-g}\mathcal{L}}{\partial g^{ab}}$.

Answer:
$$T_{ab} = \frac{1}{4\pi} (-F_{ac}F_b^c + \frac{1}{4}F_{cd}F^{cd}g_{ab})$$

4. (**Obligatory**) In the Minkowski space consider a scalar field φ with action

$$S = \int d\Omega \left(-\frac{1}{2} \varphi^{,a} \varphi_{,a} - \frac{1}{2} m^2 \varphi^2 \right)$$

and calculate its "translation-invariance" energy-momentum tensor,

$$T_b^a = \frac{\partial \mathcal{L}}{\partial \varphi_a} \varphi_{,b} - \mathcal{L} \delta_b^a .$$

Rewrite the action in a generally covariant form and calculate its "metric" energy-momentum tensor,

$$\frac{1}{2}\sqrt{-g}T_{ab} = \frac{\delta(\sqrt{-g}\mathcal{L})}{\delta g^{ab}} .$$

⁴ notation: $a \equiv D_a \equiv \frac{D}{dx^a}$ and $a \equiv \partial_a \equiv \frac{\partial}{\partial x^a}$