note6 [26. oktober 2009]

Matter action in curved space

In general relativity gravitation is the geometry of
the curved space-time (the metric tensor) rather
than a matter field like the electromagnetic field.
The action of the matter! has the same form as in
Minkowski space only written in a generally covari-
ant way. The matter then couples to the gravitatio-
nal field through the metric tensors in the matter
action.

Covariant volume element. The volume ele-
ment d§) = d*x is not invariant under a general co-
ordinate transformation. In curved spaces it has to
be substituted with a covariant expression, /—gdS2,
where ¢ is the determinant of the metric tensor gqp
(9 <0).

Indeed the metric tensor transforms as

ox'¢ '
/
Gab = %W‘ch'

(1)

Taking determinant of both sides gives g = J'2¢/,

or
V=V )
where J' = ‘%”;/: ’ is the Jacobian of the transfor-

mation. The 4-volume transforms as

ox?
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oo |4 = 2.
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Apparently the combination /—gd) transforms as

1
V—gdQ) = J/\/fg’TdQ’ =/—gd?, (4)
and is thus a covariant volume element.

Matter action. The action of the matter in ge-
neral relativity has the same form as in speci-
al relativity, only rewritten, if needed, in a gene-
rally covariant way. Particularly, dQ — /—gd<Q,
0% — g®0yp, and 9, A — D, Ab. For example,

/AajadQ — /Aaja\/—gdﬂ, (5)
/ 0 p0ypdQ — / P 0a 00/ —gd2, (6)

/ F®F,dQ) — / FWE\/—gdQ (7)

Imatter is all fields other than gravitational.

Energy-momentum tensor of matter

The variation of the matter action,

S = / £y gde, (8)

under the variation 6g° can be written in terms of
a symmetric tensor Typ,

1
08m = 3 / Tap0g*°/—gdQ

1
_i/Tabégab\/_nga

(9)

where? .
5V =9Tady"" = 6(=gL). (10)
The tensor Ty is actually the energy-momentum
tensor, since in a flat space it satisfies a conserva-
tion law. Indeed, consider an infinitesimal coordi-
nate transformation,
2% 2% =2 + . (11)
The variation of the metric tensor under this trans-
formation can be written as

5gab = ea;b + €b;a P 5gab = —€a;b — €bia - (12)

The variation of the action then takes the form

58 = / Tope®\/—gdS2. (13)
Integrating by parts?,
68 = — / T/ —gdS (14)
Thus the tensor T} satisfies the equation
Ty =0, (15)

which in a flat space turns into the energy-
momentum conservation equation 7¢* = 0. One
can thus assume that the tensor is proportional
to the canonical energy-momentum tensor. Direct
calculations show that the proportionality factor is
equal unity.

2From gqpg°¢ = 6¢ follows gqp9g%° = —8gapg®® and t-
herefore T,,0g%° = —T*Gg,;, .

3the total differential does not contribute, as usual.
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Exercises?

Rewrite the action in a generally covari-
ant form and calculate its “metric” energy-

1. In a curved space the electromagnetic field
momentum tensor,

strength tensor Fyy, is defined as Fop = Ap;q —
Aqp and the first Maxwell equation is Fop;c + (\/_E)
Fie:o + Feap = 0. Show that in the torsion _\/_Tab sgb
free space of general relativity, I'y, = I'¢,, these

equations can still be written as in Minkowski

space, Fab = Ab,a - Aa,b and Fab,c + Fbc,a +

Fca,b = 0.

2. (Obligatory) Derive the second Maxwell
equation in a curved space,

(V=gF™) , = 4my/=gj"
from the action
§= / (—IG%TF“”F@ - Aaj“) V=gdQ.
Show that the equation can also be written as
Fff’ = 47j°.
Hints:
(a) show that I'{, = %971) = (Inv/=9).

(b) show that F&° = ﬁ(\/—gF“b),a

3. The Lagrangian density for the electromagne-

tic field is
L--Lp p P
167" “ '
Calculate  the corresponding energy-
momentum tensor using 2\/ gLy = agg;L .

Answer: Top = 2= (—Fuc Ff + Y FeaFgap)

4. (Obligatory) In the Minkowski space consi-
der a scalar field ¢ with action

1 1
— dQ . sa w—= 2 2
S / ( 5, 2m¢>

and calculate its ”translation-
invariance” energy-momentum tensor,

oL
Ty = a5 vy — Loy .

: — — D — — 0
4 notation: ia =Dq = o and o =04 = doa



