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Variational principle

Action and variational principle

Action is a functional which takes the trajectory
of the system (also called path or history) as its
argument and returns a covariant real scalar as the
result.

Generally, the action takes different values for
different paths. Classical mechanics postulates that

the path actually followed by a physical

system is that for which the variation of

the action vanishes,

δS = 0. (1)

Vanishing variation means the action is stationary:
it has an extremum – generally speaking, minimum.

The postulate is called variational or least action

principle.
The classical equations of motion can be derived

from the variational principle.
If the action is represented as an integral over

time, taken along the path of the system between
the initial time and the final time of the develop-
ment of the system,

S =

∫

Ldt , (2)

the integrand L is called the Lagrangian.

Examples

Newton’s equation

For a non-relativistic body with mass m and co-
ordinates ~r, moving in an external potential V (~r),
the action is

S =

∫
(

m~v2

2
− V (~r)

)

dt, (3)

where ~v = d~r/dt is the velocity of the body.
Variation of the action under infinitesimal varia-

tion of the trajectory ~r(t) → ~r(t) + δ~r(t) is1

δS =

∫

(

m~vδ~v − ~∇V δ~r
)

dt. (4)

1the nabla operator is defined as

~∇ ≡

3
X

α=1

~eα
∂

∂xα

Integrating the first term by parts gives

δS =

∫
(

−m
d~v

dt
− ~∇V

)

δ~rdt. (5)

Since the variation δ~r is arbitrary, the expression in
parentheses has to be equal zero at the stationary
trajectory, which gives the Newton’s equation of
motion

m
d~v

dt
= −~∇V . (6)

Lorentz force

In classical electrodynamics (where the space is
Minkowski) the action of a body with mass m and
charge e moving in a given electromagnetic field Aa

is given as

S = −m

∫

ds − e

∫

Aadxa. (7)

A small variation of the trajectory of the body,
xa → xa + δxa, leads to the following variation
of the action2,

δS =

∫

(

−mδdxaua − eAaδdxa − edxaAa,bδx
b
)

.

(8)
Integrating the first and the second terms by parts
(and renaming indexes in the third term) gives3

δS =

∫

dsδxa

(

m
dua

ds
+ eAa,bu

b − eubAb,a

)

.

(9)
Since the variation δxa is arbitrary, the expression
in parentheses has to vanish identically on physical
trajectories, giving the the Lorentz force equation,

m
dua

ds
= eFabu

b (10)

where

Fab = Ab,a − Aa,b (11)

is the electromagnetic field tensor.

2in a flat space we don’t have to worry about derivatives

of the metric tensor.
3as always ∂

∂xa
≡,a≡ ∂a.
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Maxwell equations

In classical electrodynamics the action for the elec-
tromagnetic field Aa with given sources ja is writ-
ten as an integral over the 4-volume,

S = −
1

8π

∫

d4xAa,bA
a,b −

∫

d4xAaja . (12)

Canonical calculation of the variation of the action
under infinitesimal variation of the field Aa → Aa+
δAa gives the second Maxwell equation,

Aa,b

,b = 4πja . (13)

Exercises

1. Rewrite the covariant Lorentz force equation
in 3-notation, where

Aa = {φ, ~A}

~E = −~∇φ −
∂ ~A

∂t
,

~H = rot ~A ≡ ~∇× ~A .

2. (Obligatory) In Minkowski space

(a) derive4 the Maxwell equation with
sources,

∂a∂aAb = 4πjb ,

from the action

S = −
1

8π

∫

d4xAa,bA
a,b −

∫

d4xAaja.

(b) show that with the Lorenz condition,

Aa
,a = 0 ,

it is equivalent to

F ab
,a = 4πjb .

4using the Gauss theorem
Z

V

d
4
x

∂Aa

∂xa
=

I

∂V

A
a
dSa

where dSa is an infinitesimal element of the hyper-surface.


