note4 [September 16, 2009]

Geodesic

The term geodesic comes from geodesy, the science
of measuring the size and shape of Earth. In the
original sense, a geodesic was the shortest route
between two points on the Earth’s surface, namely,
a segment of a great circle. The term has since
been generalised to include measurements in more
general mathematical spaces.

Geodesic as no-acceleration trajec-
tory

The velocity vector u® of a body moving along a
trajectory is defined as
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where dx? is the infinitesimal vector along the tra-
jectory and ds is the invariant interval.

A free body in curvilinear coordinates moves in
such a way that the covariant derivative of its 4-
velocity vanishes,

Du* =0, (2)

which is called the geodesic equation. It can also
be written as
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Geodesic as shortest route

The invariant “length” of a trajectory of a moving
body is defined as the sum of infinitesimal intervals
ds along the trajectory,

S:/ds.

The shortest trajectory is the one where the vari-
ation of the length as function of the trajectories
vanishes,

(6)

To calculate the variation of the length we first vary
the square interval ds? = ggpdz®da?®,

(5)

0S5 =0.

2dsdds = §gapdz®da’ + 2gap0dz®da® (7)

which gives the variation of ds,
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The second term should be integrated by parts us-

ing
(9)

The full differential does not contribute to the vari-
ation, and we finally arrive at!
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doxtu, = d(0x%uy) — 0xdu.

Since the variation dx is arbitrary, it is the expres-
sion in brackets that should be equal zero, which
gives the equation of motion

du 1
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ds 2 (11)

which is equivalent to the no-acceleration equation

(4).

Motion of free bodies in general rela-
tivity

In general relativity a free body (that is, not af-
fected by physical forces) moves along a geodesic.
Massive bodies do not create physical fields around

them but rather distort space-time in their vicinity
causing the geodesics to become “curved”.

Exercises

1. Prove that (3) and (11) are equivalent.

2. (Obligatory) Consider the parametric equa-
tions for a straight line in Cartesian coordi-
nates x and y,
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Make a coordinate transformation x = r cos#,
y = rsin  and obtain the corresponding equa-
tions in the 7,0 coordinates. Prove that they
are identical to geodesic equations (4).




