Geodesic

The term geodesic comes from geodesy, the science of measuring the size and shape of Earth. In the original sense, a geodesic was the shortest route between two points on the Earth's surface, namely, a segment of a great circle. The term has since been generalised to include measurements in more general mathematical spaces.

Geodesic as no-acceleration trajectory

The velocity vector u^{a} of a body moving along a trajectory is defined as

$$
\begin{equation*}
u^{a}=\frac{d x^{a}}{d s} \tag{1}
\end{equation*}
$$

where $d x^{a}$ is the infinitesimal vector along the trajectory and $d s$ is the invariant interval.

A free body in curvilinear coordinates moves in such a way that the covariant derivative of its 4 velocity vanishes,

$$
\begin{equation*}
D u^{a}=0, \tag{2}
\end{equation*}
$$

which is called the geodesic equation. It can also be written as

$$
\begin{equation*}
\frac{d u^{a}}{d s}+\Gamma_{b c}^{a} u^{b} u^{c}=0 \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d^{2} x^{a}}{d s^{2}}+\Gamma_{b c}^{a} \frac{d x^{b}}{d s} \frac{d x^{c}}{d s}=0 \tag{4}
\end{equation*}
$$

Geodesic as shortest route

The invariant "length" of a trajectory of a moving body is defined as the sum of infinitesimal intervals $d s$ along the trajectory,

$$
\begin{equation*}
S=\int d s \tag{5}
\end{equation*}
$$

The shortest trajectory is the one where the variation of the length as function of the trajectories vanishes,

$$
\begin{equation*}
\delta S=0 \tag{6}
\end{equation*}
$$

To calculate the variation of the length we first vary the square interval $d s^{2}=g_{a b} d x^{a} d x^{b}$,

$$
\begin{equation*}
2 d s \delta d s=\delta g_{a b} d x^{a} d x^{b}+2 g_{a b} \delta d x^{a} d x^{b} \tag{7}
\end{equation*}
$$

which gives the variation of $d s$,

$$
\begin{equation*}
\delta d s=\frac{1}{2} \delta g_{a b} u^{a} u^{b} d s+d \delta x^{a} u_{a} . \tag{8}
\end{equation*}
$$

The second term should be integrated by parts using

$$
\begin{equation*}
d \delta x^{a} u_{a}=d\left(\delta x^{a} u_{a}\right)-\delta x^{c} d u_{c} \tag{9}
\end{equation*}
$$

The full differential does not contribute to the variation, and we finally arrive at ${ }^{1}$

$$
\begin{equation*}
\delta S=\int d s \delta x^{c}\left(\frac{d u_{c}}{d s}-\frac{1}{2} g_{a b, c} u^{a} u^{b}\right)=0 \tag{10}
\end{equation*}
$$

Since the variation δx is arbitrary, it is the expression in brackets that should be equal zero, which gives the equation of motion

$$
\begin{equation*}
\frac{d u_{c}}{d s}-\frac{1}{2} g_{a b, c} u^{a} u^{b}=0 \tag{11}
\end{equation*}
$$

which is equivalent to the no-acceleration equation (4).

Motion of free bodies in general relativity

In general relativity a free body (that is, not affected by physical forces) moves along a geodesic. Massive bodies do not create physical fields around them but rather distort space-time in their vicinity causing the geodesics to become "curved".

Exercises

1. Prove that (3) and (11) are equivalent.
2. (Obligatory) Consider the parametric equations for a straight line in Cartesian coordinates x and y,

$$
\begin{equation*}
\frac{d^{2} x}{d s^{2}}=0, \frac{d^{2} y}{d s^{2}}=0 \tag{12}
\end{equation*}
$$

Make a coordinate transformation $x=r \cos \theta$, $y=r \sin \theta$ and obtain the corresponding equations in the r, θ coordinates. Prove that they are identical to geodesic equations (4).

[^0]
[^0]: ${ }^{1} f_{, a} \equiv \frac{\partial f}{\partial x^{a}}$

