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Curvilinear coordinates

Flat and curved spaces

A space with Euclidean or pseudo-Euclidean me-
tric is called flat and the coordinates in which the
metric is (pseudo) Euclidean is also often called f-
lat. For example, the Minkowski space of special
relativity is flat.

If the metric is not everywhere (pseudo) Eucli-
dean, the coordinates are called curvilinear. For e-
xample, in the flat 2-dimensional space with polar
coordinates {r, θ} the metric is non-Euclidean,

dl2 = dr2 + r2dθ2. (1)

However, if there exist a coordinate transforma-
tion that globally (that is, everywhere) turns the
metric into (pseudo) Euclidean, the space is still
called flat. In our example such transformation is

{

x = r cos θ ,
y = r sin θ ,

(2)

If such transformation does not exist, the space
is called curved or Riemann space. The geometry of
a curved space is called non-Euclidean geometry or
Riemann geometry.

Space-time in a gravitational field

According to Einstein’s equivalent principle, gravi-
tational forces disappear (locally) in the frame of
a free falling observer. A free falling observer then
finds themselves in a Minkowski space-time.

In other words the space-time in a gravitational
field can be reduced locally to Minkowski space-
time by a (non-linear) coordinate transformation.

Yet in other words the space-time in a gravitatio-
nal field can be obtained by a (non-linear) coordi-
nate transformation from a Minkowski space-time.
This transformation cannot be global, since gravi-
tational forces, unlike inertial forces, vanish at large
distances from massive bodies. Thus the space-time
in a gravitational field is curved.

General principle of relativity

Since in the presence of gravitational fields the
space-time is curved, and it is not possible to build
a set of globally flat coordinates, any frame of re-
ference with arbitrary curvilinear coordinates (and

arbitrarily tuned clocks) must be equally accepted
in general relativity1.

The principle of general relativity is then formu-
lated as

The laws of physics should have the same
form in arbitrary frames of reference.

In order to build differential equations, invariant
under general coordinate transformations, one ne-
eds to develop differential geometry in curvilinear
coordinates.

Covariant differentiation

Curvilinear coordinates

A set of four numbers (for example time, latitude,
longitude, an height above the sea level) used to
specify the location of an event in space-time is
called (curvilinear) coordinates and is denoted as
{x0, x1, x2, x3}, or as xa, where a = 0, 1, 2, 3, or
simply as x where it does not lead to confusion2.

Under a general (non-linear) coordinate trans-
formation x → x′ the coordinate differentials dxa

transform linearly through the Jacobian matrix,
while partial derivatives of a scalar function φ(x)
transform also linearly though through the inverse
Jacobian matrix,

dxa =
3

∑

b=0

∂xa

∂x′b
dx′b ,

∂φ

∂xa
=

3
∑

b=0

∂φ

∂x′b

∂x′b

∂xa
. (3)

Covariant vectors and metric tensor

A set of four quantities Aa, where a = 0, 1, 2, 3, is
called a contravariant vector if under a coordinate
transformation it transforms as coordinate differen-
tials dxa, while a set of four quantities Aa is called
a covariant vector if it transforms3 as derivatives of
a scalar ∂φ/∂xa,

Aa =
∂xa

∂x′b
A′b, Aa =

∂x′b

∂xa
A′

b. (4)

Quantities which transform as products of vectors
(either co- or contra-variant) are said to trans-

1The only condition is that the coordinates are differen-
tiable to allow development of differential geometry.

2Typically, where possible the x0 coordinate is time.

3 In the following AaBa ≡

P

3

a=0
AaBa
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form covariantly. These quantities are called ten-

sors with the number of the vector indices called
the order of the tensor.

The contraction AaBa is apparently a scalar
(zeroth order tensor), as it is invariant under co-
ordinate transformation, AaBa = A′aB′

a.
The metric tensor gab defines the invariant infi-

nitesimal element ds2 in curvilinear coordinates,

ds2 = gabdxadxb. (5)

Since dxa is an arbitrary contra-variant vector, t-
he construction gabdxb transforms as a co-variant
vector and thus the metric tensor connects contra-
and co-variant vectors,

Aa = gabA
b . (6)

Covariant differential and Christoffel symbol

In curvilinear coordinates the differential of a
vector dAa is not a covariant quantity, since ge-
nerally

dAa = d(gabA
b) 6= gabdAb. (7)

The covariant differential, DAa, contains an addi-
tional contribution, which ensures covariance,

DAa = dAa + Γa
bcA

bdxc , (8)

where Γa
bc is called the Christoffel symbol.

Differential of a scalar d(AaBb) is already a cova-
riant quantity, therefore D(AaBa) = d(AaBb) for
an arbitrary Ba, which leads to

DAa = dAa − Γb
acAbdxc . (9)

Using the “comma” notation for partial derivatives,

dAa =
∂Aa

∂xc
dxc ≡ Aa

,cdxc , (10)

the covariant differentials take the form

DAa =
(

Aa
,c + Γa

bcA
b
)

dxc , (11)

DAa =
(

Aa,c − Γb
acAb

)

dxc . (12)

The expressions in the parentheses are tensors, sin-
ce when multiplied by arbitrary vector dxc they
produce vectors. These tensors are called covariant

derivatives and are denoted as

Aa
;c = Aa

,c + Γa
bcA

b , (13)

Aa;c = Aa,c − Γb
acAb . (14)

Consider the difference,

φ;a;c − φ;c;a = (Γb
ca − Γb

ac)φ;b , (15)

where φ is a scalar. The left-hand side is a tensor,
therefore Γb

ca − Γb
ac is also a tensor. The latter is

equal zero in a locally flat frame. Being a tensor
it is than equal zero in all other frames. Therefore
Christoffel symbol is symmetric over exchange of
the two lower indexes,

Γb
ca = Γb

ac . (16)

For DAa to be a covariant quantity one needs

DAa = gabDAb = DgabA
b, (17)

i.e. the covariant derivative of the metric tensor4

has to vanish, Dgab = 0, which defines the Chri-
stoffel symbols,

Γabc =
1

2
(gab,c − gbc,a + gac,b) . (18)

Exercises

1. (Obligatory) Let x, y be Cartesian coordina-
tes in a flat two-dimensional space with me-
tric dl2 = dx2 + dy2. Consider polar coordina-
tes x = r cos θ, y = r sin θ (another notation:
xr ≡ r, xθ ≡ θ)

(a) Calculate the interval dl2 in polar coordi-
nates and find the corresponding metric
tensor gab (where indexes a and b take the
values r, θ).

(b) From5 d~l = dr~er + dθ~eθ find ~ea, a = r, θ.

(c) Check that ~ea · ~eb = gab.

(d) Find gab = g−1
ab , ~e a = gab~eb, and ~e a · ~eb.

(e) Consider vector ~A = Aa~ea = Aa~e
a. Prove

that6

DAa ≡ ~ea · d ~A = dAa + (~ea · ~eb,c)Abdxc,

DAa ≡ ~ea · d ~A = dAa −
(

~e b · ~ea,c

)

Abdxc.

Prove that the expression in parentheses
is the Christoffel symbol (as in eq. (18)).

4Considering D(AaBb) one can define the covariant dif-
ferential of a tensor,

DF ab = dF ab + Γa
cd

F cbdxd + Γb
cd

F acdxd.
5d~l ≡ dx~ex +dy~ey, where ~ex ·~ex = ~ey ·~ey = 1, ~ex ·~ey = 0.
6comma-index denotes partial derivative: φ,c ≡

∂φ
∂xc

.


