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Curvilinear coordinates

Flat and curved spaces

A space with Euclidean or pseudo-Euclidean me-
tric is called flat and the coordinates in which the
metric is (pseudo) Euclidean is also often called f-
lat. For example, the Minkowski space of special
relativity is flat.

If the metric is not everywhere (pseudo) Eucli-
dean, the coordinates are called curvilinear. For e-
xample, in the flat 2-dimensional space with polar
coordinates {r, 8} the metric is non-Euclidean,

di* = dr? 4 r2d6?. (1)
However, if there exist a coordinate transforma-
tion that globally (that is, everywhere) turns the
metric into (pseudo) Euclidean, the space is still
called flat. In our example such transformation is

{ r =rcost,

y=rsind,

(2)

If such transformation does not exist, the space
is called curved or Riemann space. The geometry of
a curved space is called non-Euclidean geometry or
Riemann geometry.

Space-time in a gravitational field

According to Einstein’s equivalent principle, gravi-
tational forces disappear (locally) in the frame of
a free falling observer. A free falling observer then
finds themselves in a Minkowski space-time.

In other words the space-time in a gravitational
field can be reduced locally to Minkowski space-
time by a (non-linear) coordinate transformation.

Yet in other words the space-time in a gravitatio-
nal field can be obtained by a (non-linear) coordi-
nate transformation from a Minkowski space-time.
This transformation cannot be global, since gravi-
tational forces, unlike inertial forces, vanish at large
distances from massive bodies. Thus the space-time
in a gravitational field is curved.

General principle of relativity

Since in the presence of gravitational fields the
space-time is curved, and it is not possible to build
a set of globally flat coordinates, any frame of re-
ference with arbitrary curvilinear coordinates (and

arbitrarily tuned clocks) must be equally accepted
in general relativity!.

The principle of general relativity is then formu-
lated as

The laws of physics should have the same
form in arbitrary frames of reference.

In order to build differential equations, invariant
under general coordinate transformations, one ne-
eds to develop differential geometry in curvilinear
coordinates.

Covariant differentiation
Curvilinear coordinates

A set of four numbers (for example time, latitude,
longitude, an height above the sea level) used to
specify the location of an event in space-time is
called (curvilinear) coordinates and is denoted as
{29 2%, 2%, 23}, or as 2%, where a = 0,1,2,3, or
simply as 2 where it does not lead to confusion?.

Under a general (non-linear) coordinate trans-
formation z — ' the coordinate differentials dz®
transform linearly through the Jacobian matrix,
while partial derivatives of a scalar function ¢(x)
transform also linearly though through the inverse
Jacobian matrix,
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Covariant vectors and metric tensor

A set of four quantities A*, where a = 0,1,2,3, is
called a contravariant vector if under a coordinate
transformation it transforms as coordinate differen-
tials dx®, while a set of four quantities A, is called
a covariant vector if it transforms® as derivatives of

a scalar d¢/0x®,
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Quantities which transform as products of vectors
(either co- or contra-variant) are said to trans-

I The only condition is that the coordinates are differen-
tiable to allow development of differential geometry.
2Typically, where possible the 20 coordinate is time.

3 In the following | A®B, = 22:0 A°B,
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form covariantly. These quantities are called ten-
sors with the number of the vector indices called
the order of the tensor.

The contraction A“B, is apparently a scalar
(zeroth order tensor), as it is invariant under co-
ordinate transformation, A*B, = A"*B!.

The metric tensor gqp defines the invariant infi-
nitesimal element ds? in curvilinear coordinates,

(5)

Since dz® is an arbitrary contra-variant vector, t-
he construction gabdxb transforms as a co-variant
vector and thus the metric tensor connects contra-
and co-variant vectors,

ds? = gabdzadasb.

Aa = gabAb . (6)

Covariant differential and Christoffel symbol

In curvilinear coordinates the differential of a
vector dA® is not a covariant quantity, since ge-
nerally

dAq = d(9apA®) # gapdA”. (7)
The covariant differential, DA%, contains an addi-

tional contribution, which ensures covariance,

DA = dA® + T, Abda® | (8)

where I'}, is called the Christoffel symbol.
Differential of a scalar d(A, B®) is already a cova-
riant quantity, therefore D(A,B%) = d(A,B®) for
an arbitrary B%, which leads to
DA, = dA, — T Aydz® . (9)

Using the “comma” notation for partial derivatives,

0A® X
dA® = Dt dx€ = A?cdac‘ , (10)
the covariant differentials take the form
DA* = (A% +Tp.A") dz", (11)
DAa - (Aa,c - FZCAZJ) d:rc . (12)

The expressions in the parentheses are tensors, sin-
ce when multiplied by arbitrary vector dz¢ they
produce vectors. These tensors are called covariant
derivatives and are denoted as

(13)
(14)

a
Al
Aa;c =

A% + T A,
Age—T0 Ay,

Consider the difference,
Piasc — Piesa = (Fl;a - Fgc)¢;b )

where ¢ is a scalar. The left-hand side is a tensor,
therefore T'%, — I'%.. is also a tensor. The latter is
equal zero in a locally flat frame. Being a tensor
it is than equal zero in all other frames. Therefore
Christoffel symbol is symmetric over exchange of
the two lower indexes,

(15)

oo =TG- (16)

For DA, to be a covariant quantity one needs

DA, = gabDAb = DgabAba (17)

i.e. the covariant derivative of the metric tensor?

has to vanish, Dg., = 0, which defines the Chri-
stoffel symbols,
(18)

1
Fabc = 5 (gab,c — Gbc,a + gac,b) .

Exercises

1. (Obligatory) Let z,y be Cartesian coordina-
tes in a flat two-dimensional space with me-
tric dI? = dxz? + dy?. Consider polar coordina-
tes ¢ = rcosf, y = rsinf (another notation:
2" =r, 2% =0)

(a) Calculate the interval di? in polar coordi-
nates and find the corresponding metric
tensor gqp» (where indexes a and b take the
values 1, 0).

From® dl = dré,. + dféy find €,, a =, 0.
Check that €, - €, = gap.

Find g% = g;bl, € = g%y, and €7 - €.
Consider vector A = Ace, = A,e%. Prove
that®

DA® =& . dA = dA® + (&% - &) A’dx®,

DA, =&, -dA =dA, — (8" &,.) Aydz®.

Prove that the expression in parentheses
is the Christoffel symbol (as in eq. (18)).

4Considering D(A®BY) one can define the covariant dif-
ferential of a tensor,
DFab = dFab 4 1'¢ Febdgd + T Focdad.
Sdl = dzéy + dye,, where &, -8y = &y -8y = 1, & -&, = 0.

6comma-index denotes partial derivative: ¢ . = aajc .




