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Special relativity

Einstein’s special relativity is a theory of spatial
and temporal measurements in inertial frames of
reference, formulated by Albert Einstein in 1905.
It is the basis of relativistic mechanics. In the slow
motion limit special relativity reduces to Galilean
relativity.

Postulates

Special relativity is based on several postulates,
which are deduced from a number of experiments:

1. Existence of inertial frames: there exist
inertial frames of reference, which are moving
with constant velocities with respect to each
other, with Cartesian coordinates, where the
laws of physics take their simplest form. In
particular, free bodies (that is, not affected
by forces) move with constant velocities along
lines (straight curves).

2. Special principle of relativity: all iner-
tial frames are equivalent, hence the laws of
physics must have the same form in all inertial
frames.

3. Finiteness of the speed of light: the high-
est velocity for a physical object, the speed of
light in vacuum, is finite (and actually rela-
tively small, 299792458m/s).

Lorentz and Galilean transformations

Let us consider linear transformations between in-
ertial frames with parallel Cartesian coordinates
moving with relative velocity v along one of the
axes1. The general form of such transformation,
consistent with the principle of relativity (and also
isotropy of space), has the form (see exercise 1)
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where the frame with coordinates (t′, z′) moves rel-
ative to the frame with coordinates (t, z) with ve-
locity v along the z (and z′) axis.

1this transformation is often called Lorentz boost, or ve-

locity boost, or simply boost.

The x- and y-coordinates, perpendicular to the
velocity boost, transform identically and are there-
fore omitted for brevity.

The velocity c is a universal constant, the fastest
possible relative velocity of two inertial frames. Ve-
locity c is experimentally measured to be finite (and
actually relatively small, 299792458 m/s).

Transformation (1) with finite c is called the
Lorentz transformation. Note that time and space
do not transform separately but rather as com-
ponents of one inseparable four-component space-
time point,
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In the limit c → ∞ the Lorentz transformation
turns into Galilean transformation,

t′ = t ,

z′ = z − vt . (3)

Here time is absolute and does not transform at
all. The time-space coordinates then separate into
invariant time and three spatial coordinates.

Invariant interval and metric

Direct calculation shows that the interval

ds2 = dt2 − dx2
− dy2

− dz2 (4)

is invariant under Lorentz transformation (1) and
thus defines a metric2. A space with a metric is
called metric space.

The pseudo-Euclidean3 metric (4) is called
Minkowski metric and a space with such metric is
called Minkowski space.

The existence of a metric allows developement
of a geometry of space, that is, measurements of

2Metric is a function of two infinitesimally close points
in a space, which is used to measure distances and angles
(that is, to develop a geometry of a space).

3Euclidean metric in an n-dimensional space has the form

ds2 = dx2
1 + · · · + dx2

n,

while pseudo-Euclidean metric has one or more negative
signs,

ds2 = dx2
1 + · · · + dx2

k
− dx2

k+1 − · · · − dx2
n.
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distances, angles, and time intervals. However, ge-
ometry in Minkowski space, called Minkowski ge-
ometry, is different from the everyday Euclidean ge-
ometry. In particular, distances and time intervals
are relative, that is, different in different inertial
frames.

In the limit v ≪ c it reduces to Euclidean space,
which is the non-relativistic world of classical me-
chanics with Galilean transformation, where dt is
itself invariant and the Minkowski metric reduces
to the Euclidean metric,

dl2 = dx2 + dy2 + dz2 (5)

Exercises

1. (Obligatory) Derive the Lorentz transforma-
tion matrix,
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using e.g. the following strategy:

(a) Argue, that a transformation between in-
ertial frames is a linear transformation,
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and assume the following form of the
transformation matrix Λ,

Λ =

[

γ δ
β α

]

.

(b) Consider the motion of the origin of the
frame K ′ (K) relative to frame K (K ′)
and show that

β = −vγ , β = −vα .

(c) Consider the inverse transformation and
argue that matrices Λ(v)−1 and Λ(−v)
should be equal; argue that in an isotropic
space γ(v) = γ(−v); show that this gives

γ2 + vγδ = 1 .

(d) Consider a composition of two transfor-
mations, Λ(v)Λ(v′), and argue that this

should be equal to a lambda-matrix with
certain velocity v′′,

Λ(v)Λ(v′) = Λ(v′′),

where the diagonal elements must be
equal as in all lambda-matrices. Show
that the combination

vγ/δ = universal constant = −c2,

is one and the same for all inertial frames.

(e) Prove (6).

(f) Argue that c, if finite, is the largest rela-
tive velocity and the highest velocity of a
physical body.

2. (Obligatory) Consider the Lorentz transfor-
mation for differentials,
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(a) show the the interval

ds2 = c2dt2 − dz2

is invariant under Lorentz transforma-
tion.

(b) show that a moving clock runs slower,
than stationary. Hint: consider the trans-
formation of

(

dt
dz = 0

)

.

(c) show that a moving rod is shorter, than
stationary. Hint: consider a transforma-
tion into

(

dt′ = 0
dz′

)

.


