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Solutions to Friedman equation

The Friedman equation for a closed universe,

dη = ± da

a
√

1

3
κǫa2 − 1

. (1)

can be integrated for matter-dominated universe,
where the pressure is zero, p = 0, and the energy
density ǫ is equal the mass density µ. The energy
conservation equation,

dǫ = −(ǫ + p)
3a

a
, (2)

gives in this case µa3 = const, which is simply the
conservation law of the total mass inside this dust-
filled universe.

The volume of the closed universe is V = 2π2a3

and therefore µ = M/V = M/(2π2a3), where M
is the total mass of the universe. Thus const =
M/(2π2) and taking the positive square root1 gi-
ves

dη =
da√

2a0a − a2
= d arccos

a0 − a

a0

, (3)

where a0 = 1

6

κM
2π2 . Integrating first (3) and then

dt = adη gives

a = a0(1 − cos(η)) ,

t = a0(η − sin(η)) .
(4)

Thus the life time of a closed universe is finite,
∆η = 2π, the universe starts with the Big Bang at
η = 0 where a → 0 end ends with the Big Crunch

at η = 2π where again a → 0.
For the open isotropic universe the Friedman

equation reads

dη = ± da

a
√

1

3
κǫa2 + 1

. (5)

A similar integration for the matter-dominated u-
niverse with the equation of state p = 0, ǫ = µ
gives

a = a0(cosh(η) − 1) ,

t = a0(sinh(η) − η) .
(6)

1the ± sign simply reflects the symmetry of the equation

under the substitution η → −η.

Thus for the open universe the scenario is big-bang
→ expansion-forever.

For a flat isotropic universe,

ds2 = dt2 − b2(t)(dx2 + dy2 + dz2) , (7)

the scenario is also big-bang → expansion-forever2.
At early stages with high densities the universe

was (probably) rather radiation dominated, that is,
filled with (noninteracting) photons. The number of
photons in the universe is now constant, which for
the photon density, n, gives na3 = const. However,
the energy of a photon, ~ω, scales with the size of
the universe as a−1. Therefore ǫ ∝ na−1 and the
energy conservation law becomes

ǫa4 = const . (8)

The increased pressure, however, does not save t-
he universe from the singularity at “the begin-
ning”. Indeed, integrating the Friedman equation
with ǫa4 = const for early times, η ≪ 1, gives

a ∝ t1/2 . (9)

Cosmological redshift and Hubble constant

In an isotropic universe the radial (dθ = dφ = 0)
propagation of light is described by

0 = ds2 = a2(dη2 − dχ2) , (10)

with the solution

χ = ±η + const . (11)

Suppose two flashes of light are travelling radially
in rapid succession one after another. Their tem-
poral and spatial separations ∆η = ∆χ remain
constant along their trajectory in the {η, χ} coor-
dinates. However, in {t, r} the the corresponding
separations ∆t = a∆η and ∆r = a∆χ vary with
a such that along the light ray aω and λ/a remain
constant.

Therefore a ray of light with frequency ω0 e-
mitted at a distance χ and observed at the origin
(χ = 0) at time η has the frequency

ω = ω0

a(η − χ)

a(η)
≈ ω0(1 − χ

a′

a
) , (12)

2 µb3 = const, b ∝ t2/3.
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that is, redshifted, if the universe expands (a′ > 0).
The proper distance l to the source of light is

l = χa. Thus the frequency shift z can be written
as

z ≡ ω0 − ω

ω0

=
a′

a2
l ≡ Hl, (13)

where H is the so called Hubble constant,

H =
a′

a2
=

1

a

da

dt
. (14)

The current empirical value of the Hubble constant
is H ≈ (13.8 bil. years)−1.

Inserting a′

a2 = H into Friedman equation leads
to

1

a2
= H2 − κµ

3
(15)

for a closed matter-dominated universe, and to

1

a2
=

κµ

3
− H2 (16)

for an open universe.
For the critical density µc, such that

κµc

3
= H2 , (17)

the universe is flat.
The current measurements show that the relative

density Ω = µ
µc

is close to one with an error about

few per cent (flatness problem). About 30% of it
is ”dark matter”and about 70% is ”dark energy”.
The visible matter constitutes only about 3% of the
density.

Exercises

1. Interpret the cosmological red shift ω0−ω
ω0

= Hl
(l is the distance to the red-shifted galaxy) as a
Doppler effect and calculate the velocity with
which a galaxy appears to be moving relative
to the observer.

2. Show that ǫa4 = const corresponds to the
equation of state p = ǫ

3
.


