Radial fall in the Scwarzschild field

Lemaitre coordinates

In the Schwarzschild metric around a body with the gravitational radius r_q

$$ds^{2} = \left(1 - \frac{r_{g}}{r}\right)dt^{2} - \frac{dr^{2}}{1 - \frac{r_{g}}{r}} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}),$$
(1)

there is a singularity at the gravitational radius, $r = r_q$. Under the gravitational radius the coordinate r becomes time-like and t becomes space-like. However, it turns out to be not a physical singularity, but rather an artifact of the (false) assumption that a static Schwarzschild coordinates can be realized under the gravitational radius with material bodies, the so called *coordinate singularity*.

A transformation to the Lemaitre coordinates τ , ρ

$$d\tau = dt + \sqrt{\frac{r_g}{r}} \frac{dr}{1 - \frac{r_g}{r}}, \qquad (2)$$

$$d\rho = dt + \sqrt{\frac{r}{r_g}} \frac{dr}{1 - \frac{r_g}{r}}, \qquad (3)$$

leads to the Lemaitre metric, where the singularity at r_g is removed,¹

$$ds^{2} = d\tau^{2} - \frac{r_{g}}{r}d\rho^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) , \qquad (4)$$

where $r = [\frac{3}{2}(\rho - \tau)]^{2/3} r_g^{1/3}$, which is obtained by integrating $d\rho - d\tau = \sqrt{\frac{r}{r_g}} dr$.

The Lemaitre coordinates are synchronous² and are thus realized by a system of clocks in a free radial fall from infinity towards the origin.

Radial fall towards the origin

For a free falling body $d\rho = 0$ and equation (3) gives

$$dt = -\sqrt{\frac{r}{r_g}} \frac{1}{\left(1 - \frac{r_g}{r}\right)} dr .$$
(5)

In the region $r \gtrsim r_g$ we have to the lowest order

$$dt = -\frac{r_g}{r - r_g} dr , \Rightarrow \frac{r - r_g}{r_0 - r_g} = e^{-\frac{t - t_0}{r_g}}.$$
 (6)

Apparently, it takes a free falling body infinitely long t-time, the time used by the outer observer, to reach the Schwarzschild radius.

On the contrary, a free falling Lemaitre clock moves from some given r_0 to the gravitational radius (and also to the origin) within finite τ -time $\Delta \tau$,

$$\Delta \tau = -\int_{r_0}^{r_g} \sqrt{\frac{r}{r_g}} dr = \frac{2}{3} \left(\frac{r_0^{3/2} - r_g^{3/2}}{r_g^{1/2}} \right).$$
(7)

¹ there remains a genuine singularity at the origin ² the metric has the form $ds^2 = d\tau^2 + g_{\alpha\beta}dx^{\alpha}dx^{\beta}$.

note11 [5. oktober 2009]

Event horizon and black holes

Along the trajectory of a radial light ray $ds^2 = 0 = d\tau^2 - \sqrt{\frac{r_g}{r}}d\rho^2$, which gives

$$d\rho = \pm \sqrt{\frac{r}{r_g}} d\tau , \qquad (8)$$

where plus and minus describe the rays of light sent correspondingly up and down. Inserting $d\rho = d\tau + \sqrt{\frac{r}{r_g}} dr$ into (8) leads to

$$dr = \left(\pm 1 - \sqrt{\frac{r_g}{r}}\right) d\tau. \tag{9}$$

Apparently if $r < r_g$ then there is always dr < 0 and thus the light rays emitted radially inwards and outwards both end up at the origin. In other words no signal can escape from inside the gravitational radius – a phenomenon called an event horizon.

Thus a massive object with a size less than the gravitational radius, called a black hole, is completely under the event horizon and its interior is totally invisible. The black holes can be detected if they interact with the matter outside the event horizon.

Exercises

- 1. What is the escape velocity³ at a coordinate r in the Schwarzschild field? Investigate the limits $r \gg r_g$ (should be Newtonian) and $r \to r_g$ (should become impossible to escape, right?).
 - (a) show that the equation of motion of a free radially moving body in the Schwazschild field can be written as

$$\left(1 - \frac{r_g}{r}\right)\frac{dt}{ds} = E$$
, $E^2 - \left(\frac{dr}{ds}\right)^2 = 1 - \frac{r_g}{r}$

- (b) show that if the body has reached $r = \infty$ the integration constant E is its energy divided by mass;
- (c) show that for a body, starting a free radial fall from infinity with zero velocity, E = 1.
- 2. What is the g-force⁴ experienced by an observer at rest at a coordinate $r > r_g$ in the Schwarzschild field? Investigate the limits $r \gg r_g$ (should be Newtonian) and $r \to r_g$ (should be something horrible, I guess).

 $^{^3}$ a body starting a free radial fall at infinity with zero velocity will reach a given r with $\frac{dr}{ds}$ equal escape velocity;

 $[\]frac{d^2r}{ds^2}$ of a free radially falling body at the moment when the body is at rest