[ home ]
|
Newtonian Limit. Schwarzschild Metric. |
General Relativity. Note:
« 8
»
|
Unnamed Web page
The Newtonian limit: slow motion in weak fields
In this limit all fields are weak and all velocities are small. Only the
00 component of the energy−momentum tensor is non−vanishing,
T00=μ where μ is the mass density of the matter.
Therefore we shall only consider the 00
component of the Einstein's equation,
R00=κ(T00− 1/2 g00T).
In the Newtonian limit g00=1 + 2φ,
Γ α00=−φ,α,
R00=−φ ,α,α=Δφ, where
α =1,2,3. The Einstein equation thus turns into the
the Poisson's equation
Δφ= 1/2 κμ
which is equivalent to the Newtonian theory if we put
κ= 8πG/c4 ,
where G=6.67⋅10−11m3kg−1s−2 is the Newton's
gravitational constant.
Schwarzschild metric: a static spherically symmetric
solution of vacuum Einstein equations
A general spherically symmetric static metric can be written as
ds2 = Adt2 − Bdr2 − r2(dθ 2 +sin2θdφ2),
where A and B are functions of only the "radius" r.
The Christoffel symbols
Γ abc=
1/2 gad(gdb,c−gbc,d+gcd,b)
are given as
Γ rrr= 1/2 B'/B ,
Γ ttr= 1/2 A'/A ,
Γ rtt= 1/2 A'/B ,
Γ θθr= 1/r ,
Γ rθθ=− r/B ,
Γ φφr= 1/r ,
Γ rφφ=− r sin2θ/B ,
Γ φφθ=cotθ ,
Γ θφφ=−sinθcosθ .
The Ricci tensor
Rab=Rcacb,
where
Rabcd=
Γ abd,c−Γ abc,d
+Γ ebdΓ aec
−Γ ebcΓ aed
is then equal
Rtt= A''/2B + A'/B ( 1/r − B'/4B − A'/4A ),
Rθθ =1−( r/B )'− 1/2 ( A'/A + B'/B ) r/B ,
Rrr= − A''/2A + A'B'/4AB + A'2/4A2 + B'/rB ,
The vacuum Einstein equations are Rab=0. Making a linear
combination BRtt+ARrr=0 we find A'B+AB'=0
⇒ A'/A + B'/B =0 ⇒ AB=1. From
Rθθ =0 we then
find r/B =r−R, where R is an integration constant, and
B= 1/1− R/r , A=1− R/r . Finally the famous Schwarzschild
metric is
ds2=(1− R/r )dt2−( 1/1− R/r )dr2−
r2(dθ2+sin2θdφ2).
The integration constant R is determined from the Newtonian limit,
R=2GM, where M is the mass of the central body. It is called
gravitaional radius, or Schwarzschild radius.
Exercises
- Calculate the energy−momentum tensor Tab for a particle with mass
m. The action is S=−m∫ds.
- For the metric
ds2 = (1− R/r )dt2− 1/1− R/r dr2 −
r2(dθ2+sin2θdφ2)
write down the geodesic equations for a massive body and for a ray of
light.
Copyleft
©
2005 D.V.Fedorov
(fedorov @ phys au dk)