Hilbert action for the gravitational field

The most successful action for the gravitational field is the Hilbert action

$$S_g = -\frac{1}{2\kappa} \int R\sqrt{-g} d\Omega, \tag{1}$$

where κ is a constant (Einstein's constant). Its variation δS_g under a variation δg^{ab} is

$$\delta S_g = -\frac{1}{2\kappa} \int (R_{ab} - \frac{1}{2} g_{ab} R) \delta g^{ab} \sqrt{-g} d\Omega. \tag{2}$$

Gravitational field equations (Einstein equations)

From the least action principle $\delta S_g + \delta S_m = 0$, where the variation of the matter action δS_m is

$$\delta S_m = \frac{1}{2} \int T_{ab} \delta g^{ab} \sqrt{-g} d\Omega, \tag{3}$$

we find the gravitational field equations

$$R_{ab} - \frac{1}{2}g_{ab}R = \kappa T_{ab}.\tag{4}$$

Exercises

- 1. From the variational principle $\delta S = 0$ derive the corresponding equations of motion by directly calculating the variation of the action for the following systems (flat space unless stated otherwise):
 - Nonrelativistic particle in a potential V: $S = \int \left(\frac{1}{2}m\vec{v}^2 V(\vec{r})\right)dt$ [answer: $m\frac{d^2\vec{r}}{dt^2} = -\frac{dV}{d\vec{r}}$]
 - Free relativistic particle in a curved space: $S_p = -m \int ds$ [answer: $\frac{du_a}{ds} = \frac{1}{2}g_{bc,a}u^bu^c$]
 - Free electromagnetic (EM) field: $S_{em}=-\frac{1}{8\pi}\int A^a_{,b}A^{,b}_ad\Omega$ [answer: $A^{a,b}_{,b}=0$]
 - EM field created by a given current j_a : $S = -\int A^a j_a d\Omega + S_{em}$ [answer: $A^{a,b}_{,b} = 4\pi j^a$]
 - A particle with charge q in an EM field A^a : $S=-mc\int ds-q\int A^adx_a$ [answer: $m\frac{du^a}{ds}=F^{ab}u_b$]