General relativity: note6

The differential dg of the determinant of the metric tensor g_{ab} is $dg = gg^{ab}dg_{ab} = -gg_{ab}dg^{ab}$

Variational principle (= least action principle)

The laws of physics can be formulated as a vanishing variation, $\delta S = 0$, of some action $S = \int L d\Omega$, where L is called Lagrangian (density). Examples:

- 1. Nonrelativistic particle: L = T V, where $T = \frac{1}{2}mv^2$ is the particle's kinetic energy and V is its potential energy.
- 2. Free relativistic particle: $S = -mc \int ds$.
- 3. Electromagnetic field: $L_{em} = -\frac{1}{16\pi}F_{ab}F^{ab} \propto -\frac{1}{8\pi}A^a_{,b}A^b_a$.
- 4. Relativistic particle with charge q in the electromagnetic field A^a : = $-mc \int ds q \int A^a dx_a + L_{em}$

The action for the matter in the presence of a gravitational field

If the action S for a physical system in special relativity is $S_m = \int L d\Omega$, then in a gravitational field it must have basically the same form, $S_m = \int L[g]\sqrt{-g}d\Omega$, where the notation L[g] indicates that all contractions in the Lagrangian L must be written explicitly through the metric tensor g_{ab} .

Variation of the action with respect to g_{ab} and the energy-momentum tensor of matter

The variation δS_m of the matter action due to a variation δg^{ab} is given in terms of a symmetric tensor T_{ab} ,

$$\delta S_m = \frac{1}{2} \int T_{ab} \delta g^{ab} \sqrt{-g} d\Omega = -\frac{1}{2} \int T^{ab} \delta g_{ab} \sqrt{-g} d\Omega, \tag{1}$$

where

$$\frac{1}{2}\sqrt{-g}T_{ab} = \frac{\delta(\sqrt{-g}L)}{\delta g^{ab}}. (2)$$

This tensor satisfies the equation $T^{ab}_{;b}=0$ which in a flat space turns into the energy-momentum conservation equation $T^{ab}_{;b}=0$ and we thus deduce that it must be the energy-momentum tensor.

Exercises

- 1. Prove, that $\Gamma^a_{ba} = (\ln \sqrt{-g})_{,b}$ (where $_{,b} \equiv \frac{\partial}{\partial x^b}$).
- 2. Prove, that $\sqrt{-g}A^a_{;a} = (\sqrt{-g}A^a)_{,a}$ (where $b \equiv \frac{D}{\partial x^b}$).
- 3. The lagrangian density for the electromagnetic field is $L = -\frac{1}{16\pi}F_{ab}F^{ab}$. Calculate the corresponding energy-momentum tensor using $\frac{1}{2}\sqrt{-g}T_{ab} = \frac{\partial\sqrt{-g}L}{\partial g^{ab}}$. Answer: $T_{ab} = \frac{1}{4\pi}(-F_{ac}F_b^c + \frac{1}{4}F_{cd}F^{cd}g_{ab})$