[ home ] | Covariant differentiation in curved coordinates. Christoffel symbols. | General Relativity. Note: « 3 » |
Aa = (∂xa/∂x'b)A'b. |
Aa = (∂x'b/∂xa)A'b. |
DAa = dAa + ΓabcAbdxc , DAa = dAa - ΓbacAbdxc |
ds2 = gabdxadxb . |
Aa = gabAb . |
Dgab=0 , |
Γa,bc=1/2( dgab/dxc -dgbc/dxa +dgac/dxb) |
Dua/ds = 0 , |
d2xa/ds2 + Γabcdxb/dsdxc/ds = 0 . |