Space-time of an isotropic universe. Cosmological redshift. Hubble constant.

The Friedman's equation for the isotropic universe, $\frac{3}{a^4}(a^2+a'^2)=\kappa\epsilon$, and the energy conservation equation, $d\epsilon=-(\epsilon+p)3\frac{da}{a}$, can be integrated for the matter dominated universe, where the pressure is zero, p=0, and the energy density ϵ is equal to the mass density μ , $\epsilon=\mu$. The energy conservation gives $\mu a^3=Const$ and the subsequent integration of the Friedmann's equation gives for a closed universe $(a^2>0)$ a "Big Bang" \rightarrow " Big Crunch" scenario:

$$a = a_0(1 - \cos(\eta)), t = a_0(\eta - \sin(\eta))$$
 (1)

For the open isotropic universe the Friedmann's equation provides a "Big Bang" \rightarrow "Expansion Forever" scenario:

$$a = a_0(\cosh(\eta) - 1) , t = a_0(\sinh(\eta) - \eta)$$
(2)

For a flat isotropic universe $ds^2 = dt^2 - b^2(t)(dx^2 + dy^2 + dz^2)$ the scenario is also "Big Bang" \rightarrow " Expansion Forever" (see the Exercise): $\mu b^3 = const$, b = const $t^{2/3}$.

At early stages with high densities the universe was (probably) rather radiation dominated, $p = \frac{\epsilon}{3}$. This, however, doesn't save us from the singular point at $\eta = 0$. Indeed, we have (for $\eta \ll 1$): $\epsilon a^4 = const$, $a = const \cdot t^{1/2}$

Cosmological redshift. Hubble constant.

In an isotropic universe the radial $(d\theta = d\phi = 0)$ propagation of light $(ds^2 = 0)$ is described by $\chi = \pm \eta + const$, from where one can deduce that along the light ray there remains a constant product $\omega a = const$. A light ray with frequency ω_0 emitted at a distance χ and observed at the origin $(\chi = 0)$ at time η should then have the frequency $\omega = \omega_0 \frac{a(\eta - \chi)}{a(\eta)} \approx \omega_0 (1 - \chi \frac{a'}{a})$, that is, redshifted, if the universe expands (a' > 0). The proper distance l to the source of light is $l = \chi a$. Thus the frequency shift z can be written as $z \equiv \frac{\omega_0 - \omega}{\omega_0} = \frac{a'}{a^2} l \equiv H l$, where H is the so called Hubble constant, $H = \frac{a'}{a^2} = \frac{1}{a} \frac{da}{dt}$. The current value of the Hubble constant is $H \approx \frac{1}{(13bil.years)}$.

Inserting $\frac{a'}{a^2}=H$ into Friedmann's equations leads to $\frac{1}{a^2}=H^2-\frac{\kappa\mu}{3}$ for a closed universe, and to $\frac{1}{a^2}=\frac{\kappa\mu}{3}-H^2$ for an open universe. For the critical density μ_c , such that $\frac{\kappa\mu_c}{3}=H^2$, the universe is flat. The current measurements show that the relative density $\Omega=\frac{\mu}{\mu_c}$ is close to one with an error about few

The current measurements show that the relative density $\Omega = \frac{\mu}{\mu_c}$ is close to one with an error about few per cent (flatness problem). About 30% of it is "dark matter" and about 70% is "dark energy". The visible matter constitutes only about 3% of the density.

Exercises

- 1. Consider a flat (Euclidean) isotropic universe with the metric $ds^2 = dt^2 b^2(t)(dx^2 + dy^2 + dz^2)$:
 - (a) Calculate the Christoffel symbols. $[\Gamma^x_{tx} = \Gamma^y_{ty} = \Gamma^z_{tz} = \frac{b'}{b}, \Gamma^t_{xx} = \Gamma^t_{yy} = \Gamma^t_{zz} = bb']$
 - (b) Calculate the Ricci tensor and the Ricci scalar. $[R_t^t = -3\frac{b''}{b}, R_x^x = R_y^y = R_z^z = -\frac{b''}{b} 2\frac{b'^2}{b^2}]$
 - (c) Write down the $\frac{t}{t}$ component of the Einstein's equations (with perfect fluid). $[3\frac{b'^2}{b^2} = \kappa \epsilon]$
 - (d) Write down the energy conservation equation $\frac{dV}{V} = -\frac{d\epsilon}{(\epsilon+p)}$. $[3\ln(b) = -\int \frac{d\epsilon}{(\epsilon+p)}]$
 - (e) Integrate the equations for a matter dominated universe $(p=0,\,\epsilon=\mu)$. $[\mu b^3=const,b=const\cdot t^{2/3}]$
 - (f) Integrate the equations for a radiation dominated universe $(p = \frac{\epsilon}{3})$. $[\epsilon b^4 = const, b = const \cdot t^{1/2}]$
- 2. Interpret the cosmological red shift $\frac{\omega_0 \omega}{\omega_0} = Hl$ (l is the distance to the "red shifted" galaxy) as a Doppler effect and calculate the velocity with which a galaxy appears to be moving relative to the observer.