General relativity: notel0

Motion in the Schwarzschild metric

In the Schwarzschild metric the geodesic equations, d(gzi’;ub) = Lgpc,aulu’, for a = t,0, ¢ are:
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Instead of the a = r geodesic we shall divide the expression for the Schwarzschild metric by ds?:
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The first three equations can be integrated as § = 7/2 , TQ% =J,(1- %)% = E , where J and E
are constants. The fourth equation then bocomes
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where r' = g—;. Traditionally one makes a variable substitution r = 1/u
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which is the sought equation of motion.
Differentiating it once more and assuming u' # 0 gives

Exercises

1. Calculate Ryg9 and R,., from note8.

2. Show that in a synchronous reference system (ds?> = dr? + gagdz®dz”, where a, 8 = 1,2,3) the time
lines are geodesics.

3. Show that a light ray can travel around a massive star in a circular orbit much like a planet. Calculate
the radius (in Schwarzschild coordinates) of this orbit. (Answer: r = 2ry)

4. Find explicitely the Schwarzschild coordinates ¢, r as function of the Lemaitre coordinates 7, p. Answer:
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