General relativity: exam

Problems

- 1. A planet moves in a circular orbit around a black hole outside the Schwarzschild radius. What is the minimum possible value of the orbit's radius (in Schwarzschild coordinates)? Hint: $ds^2 > 0$
- 2. In Schwarzschild coordinates an observer, which is at rest at $r = r_0$, transmits a radio-signal with frequency ω_0 radially upwards. Another observer, which is at rest at $r = r_1 > r_0$, receives this signal at frequency ω_1 . Calculate the frequency shift.
- 3. In Schwarzschild coordinates an observer under the Schwarzschild radius sends two light signal radially up and down. Calculate the proper times it takes for this two light signals to reach centrum.
- 4. Consider the closed isotropic universe with metric

$$ds^2 = a(\eta)^2 (d\eta^2 - d\chi^2 - \sin \chi^2 d\Omega^2) \tag{1}$$

If the matter density is equal μ , what is the total mass of the universe? What is the visible mass of the universe at time η ? Explain what happens to the visible mass when $\eta > \pi$.

5. Estimate the order of magnitude of the relativistic effects on the surface of earth.

Constants

- 1. The mass of the earth is 6.0×10^{24} kg,
- 2. The mass of the sun is 2.0×10^{30} kg,
- 3. The radius of the earth is 6.4×10^6 m,
- 4. The speed of light is 299792458 m/s,
- 5. The Newton's gravitational constant is $6.7 \times 10^{-11} m^3 / kg/s^2$