[Home] | Introduction to General Relativity. Note « 4 » |
S=∫AB ds, |
δ S = 0, |
∂aFbc+∂bFca+∂cFab = 0. |
DFab/dxb = 4π/c ja . |
mDua/ds = e Fabub . |
ΔAa = 1/2 RdabcAdΔSbc . |
Rdabc = ∂bΓdac-∂cΓdab +ΓdebΓeac+ΓdecΓeab . |
The Riemann tensor defines also the commutator of covariant derivatives
(DaDb-DbDa)Ac = RdabcAd . |