[Home] | Introduction to General Relativity. Note « 11 » |
ds2 = a2(dη2 - dχ2 - sin2χ (dθ2 + sin2θ dφ2)) , |
Rηη = (3/a4)(a'2-aa''), Rχχ = Rθθ = Rφφ = -(1/a4)(2a2+a'2+aa''), R = -(6/a3)(a+a'') |
Tab = (ε + p)uaub - pgab |
(3/a4)(a2 + a'2) = κε, |
(1/a4)(a2 + 2aa'' - a'2) = -κp |
dε = -(ε + p)3da/a, |