## Interacting quantum fields

## Interaction Lagrangian

For two fields, $\psi$ and $\phi$, the total Lagrangian $\mathcal{L}$ is equal the sum of the free Lagrangians, $\mathcal{L}_{\psi}$ and $\mathcal{L}_{\phi}$, plus some interaction Lagrangian $\mathcal{L}_{v}$,

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}_{\psi}+\mathcal{L}_{\phi}+\mathcal{L}_{v} . \tag{1}
\end{equation*}
$$

The interaction Lagrangian $\mathcal{L}_{v}$ contains both fields $\psi$ and $\phi$. For example, the interaction between a bispinor field $\psi$ and a real scalar field $\phi$ could be

$$
\begin{equation*}
L_{v}=-g \bar{\psi} \psi \phi \tag{2}
\end{equation*}
$$

where $g$ is the coupling constant.
The dimension of the coupling constant is of importance for the subsequent perturbation theory. The theory works best (can be renormalized) only if the coupling constant is dimensionless. In the units $\hbar=c=1$ all dimensions are expressed in terms of mass $m$,

$$
\begin{align*}
& S \sim E t \sim 1  \tag{3}\\
& t \sim x \sim m^{-1}  \tag{4}\\
& \mathcal{L} \sim m^{4}  \tag{5}\\
& \phi \sim m  \tag{6}\\
& \psi \sim m^{3 / 2} \tag{7}
\end{align*}
$$

where $S$ is action, $\phi$ is spin-0 field, and $\psi$ is spin$1 / 2$ field. The coupling constant in the interaction Lagrangian (2) is dimensionless.

The Hamiltonian for the system of interacting fields is the sum of Hamiltonians of the free fields, $H_{0}$, plus some interacting potential $V$,

$$
\begin{equation*}
H=H_{0}+V \tag{8}
\end{equation*}
$$

In the following we shall use interaction Lagrangians containing fields but not field derivatives. For such Lagrangians

$$
\begin{equation*}
V=-\int d^{3} x \mathcal{L}_{v} \tag{9}
\end{equation*}
$$

## Time development in quantum mechanics

In quantum mechanics we postulate that the time evolution of a matrix operator $O$ (let's assume not explicitely depending on time, for simplicity) follows the Hamilton equation

$$
\begin{equation*}
\frac{\partial O}{\partial t}=\frac{1}{i}[O, H] \tag{10}
\end{equation*}
$$

where $\frac{1}{i}[O, H] \doteq \frac{1}{i}(O H-H O)$ is the (generalized) Poisson bracket for matrices, and $H$ is the Hamiltonian of the system.

Considering the elements of $O$ as matrix elements of some operator $\hat{O},\left\langle\Phi_{b}\right| \hat{O}\left|\Phi_{a}\right\rangle$, the time dependence in (10) can be attributed to the operator $\hat{O}$, the state vectors $\left\langle\Phi_{b}\right|$ and $\left|\Phi_{a}\right\rangle$, or to both. Hence we can have the following "pictures" for the timedevelopement of a quantum system with the Hamiltonian $H=H_{0}+V$,

1. Heisenberg picture

$$
\begin{equation*}
i \frac{\partial \Phi}{\partial t}=0, \quad i \frac{\partial O}{\partial t}=[O, H] \tag{11}
\end{equation*}
$$

2. Schrödinger picture

$$
\begin{equation*}
i \frac{\partial \Phi}{\partial t}=H \Phi, \quad i \frac{\partial O}{\partial t}=0 \tag{12}
\end{equation*}
$$

3. Interaction picture

$$
\begin{equation*}
i \frac{\partial \Phi}{\partial t}=V \Phi, \quad i \frac{\partial O}{\partial t}=\left[O, H_{0}\right] \tag{13}
\end{equation*}
$$

We shall use the interaction picture where the quantum state of a system is time-independent for free fields. A weak interaction would then lead to slow perturbative transitions between the states of free fields (normal modes).

## S-matrix

Let us try to formally integrate the time evolution equation $i \frac{\partial \Phi}{\partial t}=V \Phi$ using small time step $\Delta t$ :

$$
\begin{equation*}
\Phi\left(t_{0}+\Delta t\right)=\left(1-i V\left(t_{0}\right) \Delta t\right) \Phi \tag{14}
\end{equation*}
$$

After $N$ time steps

$$
\begin{array}{r}
\Phi\left(t_{0}+N \Delta t\right)=\left(1-i V\left(t_{N-1}\right) \Delta t\right) \cdot \\
\cdot\left(1-i V\left(t_{N-2}\right) \Delta t\right) \ldots\left(1-i V\left(t_{0}\right) \Delta t\right) \Phi\left(t_{0}\right) . \tag{15}
\end{array}
$$

Note that the later time $V$ 's come at the left. We cannot exchange the order of $V$ 's since they contain generation/annihilation operators which do not commute. The latter sum can be rewritten as

$$
\begin{gather*}
\Phi\left(t_{0}+N d t\right)=\left(1+\frac{(-i)}{1!} \sum_{i} V\left(t_{i}\right) \Delta t+\right. \\
\left.+\frac{(-i)^{2}}{2!} \sum_{i j} T\left(V\left(t_{i}\right) V\left(t_{j}\right)\right) \Delta t^{2}+\ldots\right) \Phi\left(t_{0}\right) \tag{16}
\end{gather*}
$$

where the time ordering operator $T$ arranges the $V$ 's according to their times, the older $V$ 's to the left,

$$
T\left(V\left(t_{1}\right) V\left(t_{2}\right)\right)= \begin{cases}V\left(t_{1}\right) V\left(t_{2}\right) & , \text { if } t_{1}>t_{2}  \tag{17}\\ V\left(t_{2}\right) V\left(t_{1}\right) & , \text { if } t_{1}<t_{2}\end{cases}
$$

In the limit $t_{0} \rightarrow-\infty, N \rightarrow \infty$ the time evolution will be

$$
\begin{array}{r}
\Phi(+\infty)=\left(\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \times\right. \\
\left.\times \int T\left(V\left(t_{1}\right) \ldots V\left(t_{n}\right)\right) d t_{1} \ldots d t_{n}\right) \Phi(-\infty) \tag{18}
\end{array}
$$

S-matrix is the operator that performs time evolution of the state-vector from $t=-\infty$ to $t=+\infty$,

$$
\begin{equation*}
\Phi(+\infty)=S \Phi(-\infty) \tag{19}
\end{equation*}
$$

From (18)

$$
\begin{align*}
S & =\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int T\left(V\left(t_{1}\right) \ldots V\left(t_{n}\right)\right) d t_{1} \ldots d t_{n} \\
& \doteq T \exp \left(-i \int_{-\infty}^{+\infty} V(t) d t\right)  \tag{20}\\
& =T \exp \left(i \int d^{4} x \mathcal{L}_{v}\right) \tag{21}
\end{align*}
$$

The probability $P_{f \leftarrow i}$ of a transition from the initial state $|i\rangle$ to the final state $|f\rangle$ is given by

$$
\begin{equation*}
\left.P_{f \leftarrow i}=|\langle f| S| i\right\rangle\left.\right|^{2} \equiv\left|S_{f i}\right|^{2} . \tag{22}
\end{equation*}
$$

