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Massive spin-1 field

The lowest-dimension representation of the Lorentz
group containing spin-1 is ( 1

2 , 1
2 ). The matrices of

this representations transform four-vectors ϕa =
{ϕ0, ~ϕ}.

However a four-vector contains a rotation scalar,
ϕ0, which is a spin-0 object. This redundant
component has to be excluded by imposing some
additional condition, for example, the (covariant)
Lorenz condition1,

∂aϕa = 0 . (1)

For a plane wave ϕa = εae−ipx, where εa is a four-
vector and papa = m2, the Lorenz condition gives
εapa = 0. In the rest frame (~p = 0) the latter leads
to ε0 = 0 indicating that only three components
of the vector ~ε are independent – which is indeed
consistent with the concept of a spin-1 field.

Lagrangian

A suitable Lagrangian (real bilinear form of fields
and field derivatives) is given as

L = −∂aϕ∗b∂
aϕb + m2ϕ∗bϕ

b . (2)

This Lagrangian is a sum of Klein-Gordon La-
grangians for each field component φb. Therefore
most of the results from the scalar fields immedi-
ately apply for spin-1 fields. In particular, the spin-
1 field must be a bosonic field with bosonic annihi-
lation/generation operators.

Euler-Lagrange equation

The general form of the Euler-Lagrange equations,

∂a
∂L

∂(∂aϕ∗b)
=

∂L
∂(ϕ∗b)

, (3)

applied to the Lagrangian (2) leads to a system of
decoupled Klein-Gordon equations for each compo-
nent ϕb, (

∂a∂a + m2
)
ϕb = 0 . (4)

The plane wave solutions are analogous to those for
the scalar field.

Normal modes

Recalling the results from quantization of the scalar
field one can readily write down a general solution
to the spin-1 Euler-Lagrange equations in the nor-
mal mode representation,

ϕ =
∑
kλ

1√
2ωk

(
akλελe−ikx + b†kλε∗λe+ikx

)
, (5)

1named after Danish physicist Ludvig Lorenz.

where the spin functions ελ are chosen in the rest
frame — where (ελ)0 = 0 — as eigenfunction of
the I3 generator of the rotation group, I3ελ = λελ,
λ = 1, 0,−1. They are normalized as ε†λελ′ = δλλ′ .

The generation/annihilation operators a and b
satisfy bosonic commutation relations,

akλa†kλ − a†kλakλ = δkk′δλλ′ . (6)

Electromagnetic field

Electromagnetic field is a real massless spin-1 field.
It is described by a real four-vector potential Aa.
The Lagrangian of the electromagnetic field in
Gaussian units is given as

L = − 1
8π

∂aAb∂aAb . (7)

Equivalently, the Lagrangian can be written as

L = − 1
16π

F abFab , (8)

where F ab is the electromagnetic tensor,

F ab = ∂aAb − ∂bAa . (9)

Gauge invariance

The absence of the mass term in the Lagrangian
leads to an important symmetry, called gauge sym-
metry : the Lagrangian is invariant under the so-
called gauge transformation,

Aa → Aa + ∂aφ , (10)

where φ is an arbitrary scalar function of coordi-
nates. Indeed the electromagnetic tensor (9) and
therefore the Lagrangian (8) are apparently invari-
ant under the gauge transformation (10).

The Lorenz condition limits the class of arbitrary
function in the gauge transformation to harmonic
functions

∂a∂aφ = 0 . (11)

Normal modes

The Euler-Lagrange equation for the components
of the four-potential is the zero-mass Klein-Gordon
equation,

∂a∂aAb = 0 . (12)

Let us look for the solutions in the form of a plane
wave,

A(k) =

√
2π

ω
e(k)e−ikx , (13)

where k = {ω,k}, ω = |k|, k2 = 0 (since photon
mass is zero), and e(k) is a four-vector.
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From the Lorenz condition,

ke ≡ ωe0 − ~k~e = 0 , (14)

it follows that ~e 6= 0, that is the amplitude e(k) is
not time-like.

A gauge transformation with φ =
√

2π
ω ife−ikx,

where f is a constant scalar, leads to a transforma-
tion of the amplitude

ea → ea + fka . (15)

The scalar f can always be chosen such that in a
certain frame

e = {0, e} , ke = 0; (16)

and
A0 = 0 , ∇A = 0 . (17)

The gauge (17) is usually referred to as Coulomb
gauge, transverse gauge, or radiation gauge. In this
gauge the electromagnetic field can be represented
as

A =
∑
kλ

√
2π

ωk

(
akλeλe−ikx + a†kλe

∗
λeikx

)
, (18)

where λ = 1, 2 are the two orthogonal polarizations,

eλeλ′ = δλλ′ , ek = 0 . (19)

Since Aa is real, there are no “anti”-particle opera-
tors in the normal mode expansion (18) – real fields
have only one type of particles.

The generation/annihilation operators akλ, a†kλ

satisfy the bosonic commutation relations,

akλa†kλ − a†kλakλ = δkk′δλλ′ . (20)

Spin-statistics theorem

The spin-statistics theorem states that relativisti-
cally covariant canonical quantum field theory with
positive definite energy density predicts that fields
with integer spin are necessarily bosonic, and fields
with half-integer spin – necessarily fermionic.


