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Non-relativistic limit of QFT

In the non-relativistic limit the QFT equations for
the S-matrix reduce to the Lippmann-Schwinger
equation for the scattering amplitude. The
Lippmann-Schwinger equation is equivalent to the
Schrédinger equation.

In non-relativistic quantum mechanics the first
order Born approximation of the elastic scatter-
ing amplitude is given by the Fourier transform
of the potential. Correspondingly, the potential
is given as inverse Fourier transform of the scat-
tering amplitude. The prescription to obtain the
non-relativistic potential from a QFT is then rel-
atively simple: calculate the relativistic transition
amplitude for the elastic scattering in the lowest or-
der perturbation theory; make the non-relativistic
limit; and calculate the inverse Fourier transform.

Lippmann-Schwinger equation

Let us consider a non-relativistic elastic scattering
in a system of two particles described by the Hamil-
tonian
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where V(r) is the interaction potential, m is the
reduced mass of the two particles, r is their relative
distance, and h is the Planck’s constant.

The non-relativistic quantum mechanics calcula-
tion of the cross-section involves solving the the
Schrédinger equation
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where Fy = &% and wk is the scattering wave-
function with the followmg asymptotics in coordi-
nate space,
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where f is the scattering amplitude which deter-
mines the differential cross section % through

=|fP. (4)

Multiplying the Schrodinger equation from the
left by the Green’s function
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leads to the so-called Lippmann-Schwinger equa-
tion for the scattering wave-function,
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where the superscript (+) at the Green’s function
means that it has only out-going waves and |k) is
the free plane-wave solution with momentum k,
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The Green’s function in coordinate space is given

asl
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where k/ = %

The Lippmann-Schwinger equation in coordinate
space is then given as
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Asymptotically,
h ) =
- R,
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The factor in front of the spherical wave is the scat-
tering amplitude,
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Now let us introduce the scattering matrix M,
defined as
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Multiplying (6) by (k’|V from the left leads to
the Lippmann-Schwinger equation for the reaction
matrix M,
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The solution of the Lippmann-Schwinger equa-
tion can be written as perturbation series in V,
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where the first term is the first Born approximation,
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where q = k — k’ is the transferred momentum.
It is actually the series (15) that the QFT ex-

pression for the reaction amplitude reduces to in
the non-relativistic limit.

Ladder diagrams

One can show that only the so called ladder dia-

grams,

; (17)
survive in the non-relativistic limit.
The total S-matrix, denoted as
: : (18)

is apparently the sum of all ladder diagrams,
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Equation (19) can be rewritten into the
Lippmann-Schwinger equation,
(20)

Clearly (20) is equivalent to the Lippmann-
Schwinger equation (14) if we assume that the
Fourie transform of the potential is proportional
to the (non-relativistic limit of the) lowest order

diagram,
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Let us introduce the scattering matrix M via
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where P; and Py are the total initial and final mo-
menta, and the subscrips fi denote the matrix ele-
ment between the final and the initial states. With
this notation the potential is given as
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where M is calculated from the diagram (21) in the
non-relativistic limit.

In conclusion, in the non-relativistic limit a QFT
reduces to the Schrédinger equation with the poten-
tial determined by the inverse Fourier transform of
the lowest order elastic scattering amplitude.



