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Non-relativistic limit of QFT

In the non-relativistic limit the QFT equations for
the S-matrix reduce to the Lippmann-Schwinger
equation for the scattering amplitude. The
Lippmann-Schwinger equation is equivalent to the
Schrödinger equation.

In non-relativistic quantum mechanics the first
order Born approximation of the elastic scatter-
ing amplitude is given by the Fourier transform
of the potential. Correspondingly, the potential
is given as inverse Fourier transform of the scat-
tering amplitude. The prescription to obtain the
non-relativistic potential from a QFT is then rel-
atively simple: calculate the relativistic transition
amplitude for the elastic scattering in the lowest or-
der perturbation theory; make the non-relativistic
limit; and calculate the inverse Fourier transform.

Lippmann-Schwinger equation

Let us consider a non-relativistic elastic scattering
in a system of two particles described by the Hamil-
tonian

H = H0 + V , H0 = − ~2

2m
∂2

∂r2
, (1)

where V (r) is the interaction potential, m is the
reduced mass of the two particles, r is their relative
distance, and ~ is the Planck’s constant.

The non-relativistic quantum mechanics calcula-
tion of the cross-section involves solving the the
Schrödinger equation

(Ek −H0)|ψ(+)
k 〉 = V |ψ(+)

k 〉 (2)

where Ek = ~2k2

2m and ψ
(+)
k is the scattering wave-

function with the following asymptotics in coordi-
nate space,

ψ
(+)
k (r) r→∞−→ eikr + f

e+ikr

r
. (3)

where f is the scattering amplitude which deter-
mines the differential cross section dσ

dΩ through

dσ

dΩ
= |f |2 . (4)

Multiplying the Schrödinger equation from the
left by the Green’s function

G0
E
.=

1
E −H0

, (5)

leads to the so-called Lippmann-Schwinger equa-
tion for the scattering wave-function,

|ψ(+)
k 〉 = |k〉+G

0(+)
Ek

V |ψ(+)
k 〉 , (6)

where the superscript (+) at the Green’s function
means that it has only out-going waves and |k〉 is
the free plane-wave solution with momentum k,

H0|k〉 =
~2k2

2m
|k〉 . (7)

The Green’s function in coordinate space is given
as1
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∑
qq′

〈r′|q〉 δqq′
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,

(9)

where k′ = kr
r .

The Lippmann-Schwinger equation in coordinate
space is then given as

ψ
(+)
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− m

2π~2

∫
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|r− r′|
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(10)

Asymptotically,
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(11)

The factor in front of the spherical wave is the scat-
tering amplitude,

f = − m
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Now let us introduce the scattering matrix M ,
defined as

〈k′|M |k〉 .= 〈k′|V |ψ(+)
k 〉 = −2π~2

m
f . (13)

Multiplying (6) by 〈k′|V from the left leads to
the Lippmann-Schwinger equation for the reaction
matrix M ,

M = V + V G0M . (14)

The solution of the Lippmann-Schwinger equa-
tion can be written as perturbation series in V ,

M = V + V G0V + V G0V G0V + . . . , (15)

where the first term is the first Born approximation,

〈k′|M (1)|k〉 = 〈k′|V |k〉 =
∫
d3rV (r)e−iqr , (16)

where q = k− k′ is the transferred momentum.
It is actually the series (15) that the QFT ex-

pression for the reaction amplitude reduces to in
the non-relativistic limit.

Ladder diagrams

One can show that only the so called ladder dia-
grams,

�
, (17)

survive in the non-relativistic limit.
The total S-matrix, denoted as

�
(18)

is apparently the sum of all ladder diagrams,

� =�+� + . . .
(19)

Equation (19) can be rewritten into the
Lippmann-Schwinger equation,

� =�+�.
(20)

Clearly (20) is equivalent to the Lippmann-
Schwinger equation (14) if we assume that the
Fourie transform of the potential is proportional
to the (non-relativistic limit of the) lowest order
diagram,

〈k′|V |k〉 ∝�
.

(21)

Let us introduce the scattering matrix M via

Sfi = δfi − i(2π)4δ(4)(Pf − Pi)Mfi , (22)

where Pi and Pf are the total initial and final mo-
menta, and the subscrips fi denote the matrix ele-
ment between the final and the initial states. With
this notation the potential is given as

〈k′|V |k〉 = −Mfi , (23)

where M is calculated from the diagram (21) in the
non-relativistic limit.

In conclusion, in the non-relativistic limit a QFT
reduces to the Schrödinger equation with the poten-
tial determined by the inverse Fourier transform of
the lowest order elastic scattering amplitude.


