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CPT theorem

The CPT theorem states that in a canonical quan-
tum field theory the action is invariant under
the combination of charge conjugation (C), parity
transformation (P), and time reversal (7).

The CPT theorem entails certain relations be-
tween physical observables (like equal masses and
equal life-times for particles and antiparticles). At
present, CPT is the sole combination of C, P, T
observed as an exact symmetry of nature at the
fundamental level.

Let us see how it works using the complex scalar
field as an example.

C: charge conjugation

Under charge conjugation the particles are ex-
changed with antiparticles,
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The field ¢(x) then turns into ¢'(z),
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P: parity transformation

Under parity transformation
changes sign,

the
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The field ¢(¢,x) then turns into ¢(t, —x),
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T: time reversal

Under time reversal the process of annihilation of
a particle turns into the process of generation of a
particle with opposite momentum,
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The field ¢(,x) then turns into ¢f(—t,x),
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Combined transformation: CPT

Under the combination of all three the field ¢
changes the sign of the argument,
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However, since the action involves integration [ d*z
over the whole space, the sign change of the argu-
ment of a field leaves the action unchanged, q.e.d.

Gauge theories

Gauge theory is a peculiar quantum field theory
where the Lagrangian is invariant under continuous
group of local transformations, called gauge trans-
formations. The transformations form a Lie group
which is referred to as the symmetry group or gauge
group of the theory.

For each group parameter there is a special vec-
tor field, called gauge field, which ensures the in-
variance of the Lagrangian under the gauge trans-
formation. The quanta of the gauge field are called
gauge bosons.

If the symmetry group is commutative, the gauge
theory is called abelian, otherwise it is called non-
abelian or Yang-Mills theory.

Historically the quantum electro-dynamics
(QED) was first recognised as a gauge theory
with the gauge group U(1). Then it turned out
that only gauge theories can be renormalized and
therefore the Standard Model had to be built as a
gauge theory, though in order to incorporate more
gauge bosons the gauge group had to be enlarged.
It turned out that the groups SU(2) and SU(3)
fit perfectly for the weak and strong interactions
correspondingly.

Quantum electro-dynamics

Quantum electrodynamics (QED) is a theory of the
electron/positron (spin-%) field  coupled to the
electromagnetic (vector) field A, with the interac-
tion Lagrangian

L, =—j,A = —ei%ﬂbz‘l“, (8)
where j, = ey, is the conserved current and e is
the charge of the electron.

It turns out that the QED Lagrangian,
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is invariant under the local gauge transformation,
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where a(x) is an arbitrary scalar function. The 1x1
unitary transformation matrices,

U(x) = e, (11)

form a Lie group U(1) where the charge e is the
group generator. QED is thus a gauge theory with
the symmetry group U(1). The group is commuta-
tive, therefore QED is an abelian theory.

The QED Lagrangian (9) can be conveniently
written as!
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where the group covariant derivative,

D, =0, +ieA,, (13)

has the property that under the gauge transforma-
tion
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The gauge field tensor can be written through
group covariant derivatives as
F ab =

[Da;Db] . (15)
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Non-abelian (Yang-Mills) gauge theories

The QED with the U(1) symmetry group has only
one vector (spin-1) boson, the photon, while more
vector bosons are needed for the standard model.
Yang and Mills suggested to consider a more gen-
eral group of matrices,
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with generators I;, j = 1...n, and Lie-algebra

[1;,Ix] = Cl 1y (17)
If the structure constants C’;k are not equal zero,
the theory is called non-abelian.

To make the theory gauge invariant a separate
vector field A7 is needed for each group parameter
a;j and the gauge field becomes A% = I7A% (there
is no difference whether the group index j is up
or down). The generalized gauge transformation is
now defined as

v — Y =Uy,
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The transformation matrices U are of a certain
dimension and thus the field 1, on which the ma-
trix operates, becomes a column-vector in this new

dimension?.

1p2 = FabFab
2this dimension is referred to as weak isospin space for the
weak interaction and color space for the strong interaction.

In a Yang-Mills theory the fermionic field v is
then a rather non-trivial object: it is a genera-
tion/annihilation operator in the space of quantum
states of the field; a Lorentz group bispinor; and
an object rotated by a (usually fundamental) rep-
resentation of the gauge group.

The Yang-Mills guage-field tensor is
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The Yang-Mills Lagrangian for the gauge field is
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with the standard normalization
Trace(I;Ix) = £6;) . (21)

Since the Yang-Mills field tensor contains the
gauge field commutator (which is of second order in
the field) the Yang-Mills Lagrangian contains third
and fourth order terms. The non-abelian gauge
bosons can thus self-interact.

The gauge bosons are necessarily massless (as the
mass term breaks gauge invariance). However with
the so called Higgs mechanism the gauge bosons can
acquire effective mass through interactions with the
Higgs field.

The number of gauge bosons is equal to the num-
ber of generators in the gauge group. There is one
gauge boson, the photon, for the U(1) group; three
gauge bosons for the SU(2) group; and eight gauge
bosons for the SU(3) group.



