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Reaction amplitude

An archetypal process in quantum field theory is a
reaction where two particles are prepared (e.g. in
an accelerator) in an initial plane-wave state with
given momenta, for example, a boson with momen-
tum k and a fermion with momentum p and polar-
ization λ,

|i〉 = a†ka
†
pλ|0〉 , (1)

where |0〉 is the vacuum state. The particles are
then sent toward each other, a reaction happens
with certain probability, and the reaction products
are detected by the detection system in their final
plane-wave states with certain momenta. Suppose
the detectors measure the same particles (elastic
scattering) with some (presumably changed in the
reaction) momenta and polarization,

〈f | = 〈0|ak′ap′λ′ . (2)

The reaction amplitude is given by the matrix ele-
ment

Sfi = 〈f |S|i〉 (3)

where the S-matrix is written as a perturbation se-
ries of T-products of the interaction Lagrangians

S =
∑

n

in

n!

∫ n∏
j=1

d4xjT

n∏
j=1

Lv(xj) . (4)

The reaction probability is given by |Sfi|2.

Normal product

The matrix element (3) could be easily calculated
if only instead of the T-product there were an ar-
rangement where all generators stand to the left of
all annihilators. Indeed since a|0〉 = 0 and 〈0|a† = 0
the matrix element

〈0|ak′ap′λ′(generators)(annihilators)a†ka
†
pλ|0〉 (5)

is zero unless

(generators) ≡ a†k′a
†
p′λ′ , (6)

(annihilators) ≡ akapλ (7)

in which case it is equal one.
Such ordering is called normal or N-product of

fields,

N(fields) = (generators)(annihilators) . (8)

Propagator

The difference ∆(AB) (also denoted as AB) be-
tween T- and N-product of two fields A and B is
called a propagator

∆(AB) = T (AB)−N(AB) . (9)

Apparently, if the fields commute, e.g. for a com-
plex scalar field [φ, φ] = [φ†, φ†] = 0, there is no
difference between T- and N-product.

∆(φφ) = ∆(φ†φ†) = 0 (10)

Let us calculate the propagator ∆(φ(x)φ†(x′)) for
a complex scalar field φ. Introducing the positive-
and negative-frequency plane-waves,

φ(x) = φ(+)(x) + φ(−)(x) , (11)

where
φ(+)(x) =

∑
k

1√
2ωk

ake
−ikx , (12)

φ(−)(x) =
∑
k

1√
2ωk

b†ke
+ikx , (13)

the N-product is given as1

N
(
φ(x)φ†(x′)

)
= φ(+)†(x′)φ(+)(x)

+φ(+)(x)φ(−)†(x′) + φ(−)(x)φ(+)†(x′)
+φ(−)(x)φ(−)†(x′) . (14)

The T-product is defined as

T
(
φ(x)φ†(x′)

)
=

{
φ(x)φ†(x′) , t > t′

φ†(x′)φ(x) , t < t′
. (15)

Calculating the difference gives

∆
(
φ(x)φ†(x′)

)
=

{
∆(+)(x− x′) , t > t′

−∆(−)(x− x′) , t < t′
.

(16)
where

∆(±)(x− x′) ≡
[
φ(±)(x), φ(±)†(x′)

]
= ±

∑
k

e∓ik(x−x′)

2ωk
. (17)

The propagator is usually written as a Fourier
integral23,

∆
(
φ(x)φ†(x′)

)
= i

∫
d4k

(2π)4
e−ik(x−x′)

k2 −m2 + i0
. (18)

In this form it is easy to see that (i times) the scalar
propagator is the Green’s function of the Klein-
Gordon equation.

1the operators inside the interaction Lagrangian Lv(x)
(that is, the fields corresponding to the same point x) are
postulated to be already in the normal order.

2where
P

k
V→∞−→

R
d3k

(2π)3
.

3k2 .
= kaka



2

Note that the propagator is not an operator, but
a (complex) number. This is because the commu-
tator of the (scalar) field operators is a number.

For fermionic fields the T- and N-products have
to be redefined slightly such that their difference,
the propagator, is expressed through the anti-
commutator. Specifically,

T
(
ψα(x)ψ̄β(x′)

)
=

 ψα(x)ψ̄β(x′) , t > t′

−ψ̄β(x′)ψα(x) , t < t′
,

(19)
and

N
(
ψα(x)ψ̄β(x′)

)
= −ψ̄(+)

β (x′)ψ(+)
α (x)

+ψ(+)
α (x)ψ̄(−)

β (x′)

+ψ(−)
α (x)ψ̄(+)

β (x′)

+ψ(−)
α (x)ψ̄(−)

β (x′) , (20)

where α and β are the indices in the bispinor space.
Analogously, (i times) the fermionic propagator

must be the Green’s function of the Dirac equa-
tion4,

∆
(
ψα(x)ψ̄β(x′)

)
=∫

d4p

(2π)4

(
i

γp−m+ i0

)
αβ

e−ip(x−x′) . (21)

For the electromagnetic field the propagator de-
pends on the gauge. One particular choice (Feyn-
man gauge) is

∆ (Aa(x)Ab(x′)) =
∫

d4k

(2π)4
−iηab

k2 + i0
e−ikx , (22)

where ηab is the Minkowski metric tensor.

Wick’s theorem

The T-product of fields is equal the sum of normal
products of all possible combinations of propaga-
tors,

T (A . . . Z) = N(A . . . Z)
+∆(AB)N(B . . . Z)

+∆(AB)∆(CD)N(E . . . Z)
±(all other combinations of propagators) . . . (23)

where ± indicates that when two anti-commuting
operators are commuted (to move an operator next
to its propagator partner) a minus sign should be
recorded.

For example, for two fields

Tφ(x)φ†(x′) = Nφ(x)φ†(x′) + ∆(φ(x)φ†(x′)) .
(24)

4here the expression 1
γp−m

sigifies the inverse matrix

(γp−m)−1.

Feynman diagrams

A Feynman diagram is a graphical representation
of a term in the Wick’s expansion (23) of a pertur-
bative term of the S-matrix (4).

Taking the interaction Lagrangian Lv = −gψ̄ψφ
as an indicative example, the diagrams in coordi-
nate space are drawn according to the following
rules.

1. Each integration coordinate xj is represented
by a point:

�

xj

2. The bosonic propagator ∆(φ(xi)φ†(xj)) is rep-
resented by a bosonic (usually wiggly) line con-
necting points xi and xj :

�xi xj

3. The fermionic propagator ∆(ψ(xi)ψ̄(xj)) is
represented by a fermionic (usually solid) line
connecting points xi and xj with an arrow from
xj to xi;

�
xixj

4. A field φ(xi) is represented by a bosonic line
attached to the point xi;

�
xi

5. A field ψ(xi) is represented by a fermionic line
attached to the point xi with an arrow toward
the point;

�
xi

6. A field ψ̄(xi) is represented by a fermionic line
attached to the point xi with an arrow from
the point;

�
xi

In practice Feynman diagrams are calculated in
momentum space.
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Examples of Feynman diagrams

For the interaction Lagrangian Lv = −gψ̄ψφ the
second order term of the S-matrix is given as

S(2) =
(−ig)2

2!

∫
d4x1d

4x2

×T ψ̄(x1)ψ(x1)φ(x1)ψ̄(x2)ψ(x2)φ(x2) . (25)

The Wick’s expansion of the T-product in (25)
gives, among others, the term

Nψ̄(x1)ψ(x1)ψ̄(x2)ψ(x2)∆(φ(x1)φ(x2)) , (26)

According to Feynman rules the corresponding di-
agram, see figure 1, has two vertexes, x1 and x2,
connected by a bosonic contraction ∆(φ(x1)φ(x2)),
and non-contracted fermionic lines ψ̄(x1), ψ(x1)
and ψ̄(x2), ψ(x2) attached correspondingly to ver-
texes x1 and x2.

�∆(φ(x1)φ(x2))

ψ̄(x1)

ψ̄(x2)

ψ(x1)

ψ(x2)

x1

x2

Figure 1: Feynman diagram representing the term
(26).

Another interesting term in the Wick’s expansion
of the T-product in (25) is

∆(ψ(x1)ψ̄(x2))Nψ̄(x1)ψ(x2))φ(x1)φ(x2) . (27)

Its Feynman diagram, see figure 2, has two
vertexes, connected by the fermionic contrac-
tion ∆(ψ(x1)ψ̄(x2)) and the non-contracted fields
ψ̄(x1), φ(x1) (with vertex x1) and ψ(x2), φ(x2)
(with vertex x2).

Initial and final states for Feynman diagrams

An non-contracted field ψ gives a non-zero result
when acting on a particle state a†pλ|0〉 to the right,

ψ(x)a†pλ|0〉 = upλe
−ikx|0〉 (28)

or on the anti-particle b†kλ|0〉 state to the left,

〈0|bpλφ(x) = 〈0|vpλe
+ikx (29)

�∆(ψ(x1)ψ̄(x2))

ψ̄(x1)

ψ(x2)

φ(x1)

φ(x2)

x1

x2

Figure 2: Feynman diagram representing the term
(27).

An non-contracted field ψ̄ acts non-vanishingly
on an anti-particle to the right,

ψ̄(x)b†pλ|0〉 = v̄pλe
−ipx|0〉 (30)

or a particle to the left,

〈0|apλψ̄(x) = 〈0|ūpλe
+ipx (31)

Thus,

1. The non-contracted field ψ can represent a par-
ticle in the initial state or an antiparticle in the
final state.

2. The barred field ψ̄ can represent an antiparti-
cle in the initial state or a particle in the final
state.

3. The non-contracted real field φ can represent a
particle in both the initial and or final states.

If the initial state is assumed to be at the right
side of the diagram and the final state at the
left side, then figure 1 describes (a contribution
to) fermion-fermion scattering, figure 2 – fermion-
fermion annihilation into two bosons.

If the initial state is assumed at the bottom of the
diagram and the final state at the top, then figure 1
describes (a contribution to) fermion-antifermion
scattering, figure 2 – boson-fermion scattering.


