
1 note1 : November 6, 2016

Introduction

In the context of particle physics Quantum Field
Theory is a theory of elementary particles and their
interactions. It forms the basis for the Standard
Model of elementary particles.

Elementary particles are the most fundamental
(structureless) particles — like electrons and pho-
tons — which exist in our universe. Elementary
particles exhibit wave-particle duality: on the one
hand they diffract and interfere as waves (fields),
on the other hand they appear and disappear as
whole entities (called quanta). Hence the name of
the theory.

A quantum field theory seeks i) to explain cer-
tain fundamental experimental observations — like
the existence of antiparticles; the spin-statistics re-
lation; the CPT symmetry — and ii) too predict
the results of any given experiment, like the cross-
section for the Compton scattering, or the value of
the anomalous magnetic moment of the electron.

There are two popular approaches to deal with
quantum fields. One is the path integral formula-
tion, where elementary particles have the property
of being able to propagate simultaneously along all
possible trajectories with certain amplitudes. In
the other approach — called canonical quantization
— elementary particles are field quanta: necessarily
chunked ripples in the field.

In the end, the two formulations proved to be
equivalent.

In this course we shall pursue the second ap-
proach and build the quantum field theory in the
canonical way: as a classical Lagrangian field the-
ory with the subsequent canonical quantization.1

Fundamental principles

Quantum field theory is built on several fundamen-
tal principles.2

Principle of relativity
The principle of relativity is the requirement
that the laws of physics have the same form in
all admissible frames of reference.

(In the absence of gravitation one can choose
to admit only inertial frames of reference as
the laws of physics in the absence of gravita-
tion take particularly simple form in inertial
frames.)

Principle of locality
The principle of locality states that an object

1sometimes historically called “second quantization”.
2A “principle” is a physical law of more general — typi-

cally universal — applicability usually formulated as a sim-
ple and succinct statement.

can only be influenced by its immediate sur-
roundings.
(From this principle follows the finite speed of
information transmission.)

Principle of covariance
The principle of covariance emphasizes formu-
lation of physical laws using only those phys-
ical quantities the measurements of which the
observers in different frames of reference could
unambiguously correlate.
(Mathematically speaking, the physical quan-
tities must transform covariantly, that is, un-
der a certain representation of the group of co-
ordinate transformations between admissible
frames of reference of the physical theory. This
group of coordinate transformations is referred
to as the covariance group of the theory.)

In canonical quantum field theory the admissible
frames of reference are the inertial frames of special
relativity. The transformations between frames are
the velocity boosts, rotations, translations, and re-
flections. Altogether they form the Poincaré group
of coordinate transformations. Boosts and rota-
tions together make up the Lorentz group.

The covariant quantities are four-scalars, four-
vectors etc. of the Minkowski space of special
relativity (and also more complicated objects like
bispinors and others which we shall discuss later).

Covariant vectors of special relativity

Four-coordinates

An event3 in an inertial frame can be specified with
four coordinates {t, r}, where t is the time of the
event, and r ≡ {x, y, z} are the three Euclidean
spatial coordinates.

The coordinates of the same event in different in-
ertial frames are connected by a linear transforma-
tion from the Poincaré group. Rotations, transla-
tions and reflections do not couple time and spatial
coordinates, but velocity boosts do. Therefore in
special relativity time and spatial coordinates are
inseparable components of one and the same ob-
ject. It is only in the non-relativistic limit that
time separates from space.

The Lorentz transformation of coordinates under
a velocity boost v along the x-axis is given as
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3An event in the theory of relativity is a physical pro-
cess whose temporal duration and spatial extension can be
neglected in the present context.
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where primes denote coordinates in the boosted
frame; γ ≡ (1 − v2/c2)−1/2; and c is the speed of
light in vacuum.4

The four-coordinates {t, r} are customarily de-
noted as xa, where a = 0, 1, 2, 3, such that

x0 = t, x1 = x, x2 = y, x3 = z . (2)

The Lorentz transformation (1) can then be conve-
niently written as5

x′a = Λa
bxb . (3)

where Λa
b is the 4×4 transformation matrix in equa-

tion (1).

Invariant

A direct calculation shows that velocity boosts to-
gether with rotations, translations, and reflections
— that is, all Lorentz transformations — conserve
the following form,

∆s2 = ∆t2 −∆r2 , (4)

where {∆t, ∆r} is the coordinate difference be-
tween two events. This form is called the time-space
interval or invariant interval.

In its infinitesimal incarnation,

ds2 = dt2 − dr2 , (5)

the form determines the geometry of time-space
and is called metric. The space with metric (5)
is called Minkowski space.

Dual coordinates

The Lorentz transformations conserve the form

t2 − r2 = t2 − x2 − y2 − z2 , (6)

which can be conveniently written as

t2 − r2 ≡ xaxa , (7)

where the four quantities xa — often called dual
coordinates — are defined as

xa ≡ {t,−r} = gabx
b , (8)

4in the following we shall mostly use the notation where

~ = c = 1 .

5note the “implicit summation” notation,

Λa
b xb ≡

3X
b=0

Λa
b xb .

where the diagonal tensor gab with the main di-
agonal {1,−1,−1,−1} is the metric tensor of the
Minkowski space of special relativity.

Under Lorentz transformations the dual coordi-
nates transform with the Lorentz matrix where v is
substituted with −v, which is actually the inverse
Lorentz matrix,

x′a = (Λ−1)b
axb . (9)

Four-gradient

The partial derivatives of a scalar with respect to
four-coordinates,
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apparently transform like dual coordinates, that is,
via the inverse Lorentz matrix,

∂
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Covariant vectors and tensors

A contra-variant four-vector is a set of four objects,
Aa = {A0,A}, which transform from one inertial
frame to another in the same way as coordinates
in (3),

A′a = Λa
bAb . (12)

A co-variant four-vector is a set of four objects, Aa,
which transform from one inertial frame to another
in the same way as partial derivatives in (11),

A′
a = (Λ−1)b

aAb . (13)

A covariant tensor F ab is a set of 4×4 objects
which transform between inertial frames as a prod-
uct of two 4-vectors,

F ′ab = Λa
cΛb

dF
cd . (14)

There exist other covariant objects in special rel-
ativity, like bispinors, which cannot be built out of
4-vectors. They will be discussed later.


