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Exercises

(Extra) One-boson exchange potential

Calculate the non-relativistic one boson exchange

potential corresponding to the diagram

�
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for interaction Lagrangian

Lv = −gψ̄γ5ψφ , (2)

which describes interaction of fermions with
pseudo-scalar bosons.

Hints:
The matrix element1 M is given as

M = i2g2ū(p′1)γ5u(p1)
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In the non-relativistic limit E ≈ m up to the
terms v2
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Now introducing p1 − p′
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In the c.m. frame

k2 − µ2 = −(q2 + µ2) (10)

and finally
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1defined through

〈f |S|i〉 = −i(2π)4δ(Pf − Pi)M ,

where Pi and Pf are the sums of all particle momenta in the
correspindingly initial and final states.

The one-pseudo-scalar-boson-exchange-potential
is the given as
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The integral
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The OBEP with pseudo-scalar boson is thus
a finite-range spin-spin and tensor potential of
Yukawa type with the range equal to inverse mass
of the exchange boson.
The OBEP with a vector boson has a slightly

different spin structure which in addition includes
central and spin-orbit forces. The central force has
the Yukawa form e−µr/r. In the limit of massless
vector boson this gives the Coulomb central poten-
tial.
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