Exercises

1. For the $(j=1)$ representation of the rotation group find the finite rotation matrix around the z axis, $R_{z}(\theta)$, in the basis where I_{z} is diagonal. The $(j=1)$ representation of the rotation group should be equivalent to the rotation group itself (which rotates coordinates $\{x, y, x\})$, right? But what is the matrix that rotates $\{x, y, x\}$ around the z-axis? And what is object the matrix $R_{z}(\theta)$ rotates? How about the general (j) representation with integer j ?
2. Show that the generator $I_{\vec{n}}$ for the rotation around axis \vec{n} is given as $I_{\vec{n}}=\vec{I} \cdot \vec{n}$ (note the vector dot product, not a matrix acting on a vector).
Hint: Show that rotation around \vec{n} has to leave \vec{n} unchanged, and therefore $I_{\vec{n}} \vec{n}=0$ (here is a matrix acting on a vector). Prove the last equation by direct calculation.
3. Find the finite matrix for a rotation around axis \vec{n} over anble θ for a 2×2 representation of the rotation group.
Hints:

- $\vec{I}=\frac{1}{2} \vec{\sigma}$, and $(\vec{\sigma} \cdot \vec{n})^{2}=1$, where $\vec{\sigma}$ are Pauli matrices.

4. Argue that the ($j=\frac{1}{2}$) representation of the rotation group is $S U(2)$ - a group of 2×2 unitary matrices with determinant 1. Argue that there is a 2 -to- 1 homorphism $S U(2) \rightarrow$ $S O(3)$.
5. Find the additive parameter φ of the velocity boost matrix (along the x-axis) and the corresponding generator.
Hint: $v=\tanh \varphi$.
6. Using the additive parameter $\varphi=\frac{1}{2} \ln \frac{1+v}{1-v}$ find the velocity-boost matrices for the $\left(\frac{1}{2}, 0\right)$ and ($0, \frac{1}{2}$) representations of the Lorentz group.
7. Consider a classical particle with Lagrangian $\mathcal{L}(\vec{r}, \vec{v})$ where $\vec{r}=\{x, y, z\}$ is the coordinate of the particle and $\vec{v}=\{\dot{x}, \dot{y}, \dot{z}\}$ is its velocity.

- Suppose the Lagrangian is invariant under the transformation

$$
\vec{r} \rightarrow \vec{r}+\epsilon \vec{q}, \vec{v} \rightarrow \vec{v}+\epsilon \dot{\vec{q}},
$$

where \vec{q} is a certain function of time, $\dot{\vec{q}}$ is its time-derivative, and ϵ is an infinitesimally small quantity. Show that the quantity

$$
\frac{\partial \mathcal{L}}{\partial \vec{v}} \vec{q}
$$

is conserved on the trajectories of the particle.

- Consider a particle with mass m in a spherically symmetric potential $V(r)$ with the Lagrangian

$$
\mathcal{L}=\frac{1}{2} m \vec{v}^{2}-V(r) .
$$

Show that the rotation around the z-axis corresponds to the above transformation with

$$
\vec{q}=\{y,-x, 0\} .
$$

Show that the corresponding conserved quantity is the z-projection of the angular momentum of the particle.
8. Suppose j^{a} is a conserved Noether's current. Consider a new current,

$$
j^{\prime a}=j^{a}+\partial_{b} X^{a b}
$$

where $X^{a b}$ is an arbitrary anti-symmetric tensor, $X^{a b}=-X^{b a}$. Is the new current conserved? Is the total charge, $\int d^{3} \vec{r} j^{0}$, conserved?

