Exercises

- 1. For the (j = 1) representation of the rotation group find the finite rotation matrix around the z axis, $R_z(\theta)$, in the basis where I_z is diagonal. The (j = 1) representation of the rotation group should be equivalent to the rotation group itself (which rotates coordinates $\{x, y, x\}$), right? But what is the matrix that rotates $\{x, y, x\}$ around the z-axis? And what is object the matrix $R_z(\theta)$ rotates? How about the general (j) representation with integer j?
- 2. Show that the generator $I_{\vec{n}}$ for the rotation around axis \vec{n} is given as $I_{\vec{n}} = \vec{I} \cdot \vec{n}$ (note the vector dot product, not a matrix acting on a vector).

Hint: Show that rotation around \vec{n} has to leave \vec{n} unchanged, and therefore $I_{\vec{n}}\vec{n} = 0$ (here is a matrix acting on a vector). Prove the last equation by direct calculation.

3. Find the finite matrix for a rotation around axis \vec{n} over anble θ for a 2×2 representation of the rotation group.

Hints:

• $\vec{I} = \frac{1}{2}\vec{\sigma}$, and $(\vec{\sigma} \cdot \vec{n})^2 = 1$, where $\vec{\sigma}$ are Pauli matrices.

- 4. Argue that the $(j = \frac{1}{2})$ representation of the rotation group is SU(2) a group of 2×2 unitary matrices with determinant 1. Argue that there is a 2-to-1 homorphism $SU(2) \rightarrow SO(3)$.
- 5. Find the additive parameter φ of the velocity boost matrix (along the *x*-axis) and the corresponding generator. Hint: $v = \tanh \varphi$.
- 6. Using the additive parameter $\varphi = \frac{1}{2} \ln \frac{1+v}{1-v}$ find the velocity-boost matrices for the $(\frac{1}{2}, 0)$ and $(0, \frac{1}{2})$ representations of the Lorentz group.
- 7. Consider a classical particle with Lagrangian L(r, v) where r = {x, y, z} is the coordinate of the particle and v = {x, y, z} is its velocity.
 Suppose the Lagrangian is invariant under the transformation

$$\vec{r} \to \vec{r} + \epsilon \vec{q}, \ \vec{v} \to \vec{v} + \epsilon \vec{q},$$

where \vec{q} is a certain function of time, $\dot{\vec{q}}$ is its time-derivative, and ϵ is an infinitesimally small quantity. Show that the quantity

$$rac{\partial \mathcal{L}}{\partial ec{v}} ar{q}$$

is conserved on the trajectories of the particle. • Consider a particle with mass m in a spherically symmetric potential V(r) with the Lagrangian

$$\mathcal{L} = \frac{1}{2}m\vec{v}^2 - V(r)\,.$$

Show that the rotation around the z-axis corresponds to the above transformation with

$$\vec{q} = \{y, -x, 0\}$$

Show that the corresponding conserved quantity is the z-projection of the angular momentum of the particle.

8. Suppose j^a is a conserved Noether's current. Consider a new current,

$$j^{\prime a} = j^a + \partial_b X^{ab} \,,$$

where X^{ab} is an arbitrary anti-symmetric tensor, $X^{ab} = -X^{ba}$. Is the new current conserved? Is the total charge, $\int d^3 \vec{r} j^0$, conserved?