## Exercises

1. Calculate the current and the momentum of the positive- and negative-frequency solutions of the Dirac equation.
2. The spinors $\phi \in\left(\frac{1}{2}, 0\right)$ and $\chi \in\left(0, \frac{1}{2}\right)$ are often called "left" and "right". Explain why.
Hint: investigate the behavior of the projection of the spin on the momentum, $\phi^{\dagger} \frac{1}{2} \vec{\sigma} \vec{p} \phi$, as function of the velocity with which the spinor moves relative to the observer.
What happens if the spinor has zero-mass and is thus doomed to forever move with the speed of light?
3. Show that $\frac{d^{3} p}{2 E_{\vec{p}}}$ is invariant.

Hint: consider $d^{4} p \delta\left(p^{2}-m^{2}\right)$.
4. Consider the parity transformation of coordinates as a similarity transformation with the diagonal transformation matrix

$$
P=\operatorname{diag}(1,-1,-1,-1)
$$

such that under parity transformation

$$
x \rightarrow P x
$$

Calculate the transformed generators $P \vec{J} P^{-1}$ and $P \vec{K} P^{-1}$.
5. Argue that the $\left(\frac{1}{2}, \frac{1}{2}\right)$ representation of the Lorentz group is equivalent (up to a similarity transformation) to the the Lorentz group itself (the 4 -vector representation) while the samedimension representation $\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$ is not. Hint: argue that $\left(\frac{1}{2}, \frac{1}{2}\right)=\left(\frac{1}{2}, 0\right) \otimes\left(0, \frac{1}{2}\right)$ and recall the $\left\{\phi^{\dagger} \phi, \phi^{\dagger} \vec{\sigma} \phi\right\}$ exercise.
6. For our spin- $\frac{1}{2}$ field calculate the canonical equal-time anti-commutation relation,

$$
\begin{equation*}
\left\{\psi(t, \vec{r}), \Pi\left(t, \vec{r}^{\prime}\right)\right\} \tag{1}
\end{equation*}
$$

where $\Pi$ is the conjugate momentum,

$$
\begin{equation*}
\Pi=\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \psi\right)} \tag{2}
\end{equation*}
$$

7. When we turned (by correspondingly commuting and anti-commuting) the Hamiltonians of the scalar and the Dirac fields into the canonical form (with the number-of-particle operators) we disregared some infinite contributions. What are the signs of this contributions for the scalar and for the Dirac fields?
