Exercises

- 1. Calculate the current and the momentum of the positive- and negative-frequency solutions of the Dirac equation.
- 2. The spinors $\phi \in (\frac{1}{2}, 0)$ and $\chi \in (0, \frac{1}{2})$ are often called "left" and "right". Explain why.

Hint: investigate the behavior of the projection of the spin on the momentum, $\phi^{\dagger} \frac{1}{2} \vec{\sigma} \vec{p} \phi$, as function of the velocity with which the spinor moves relative to the observer.

What happens if the spinor has zero-mass and is thus doomed to forever move with the speed of light?

- 3. Show that $\frac{d^3p}{2E_{\vec{p}}}$ is invariant. Hint: consider $d^4p\delta(p^2 - m^2)$.
- 4. Consider the parity transformation of coordinates as a similarity transformation with the diagonal transformation matrix

$$P = \text{diag}(1, -1, -1, -1)$$

such that under parity transformation

$$x \to Px$$
.

Calculate the transformed generators $P\vec{J}P^{-1}$ and $P\vec{K}P^{-1}$.

- 5. Argue that the $(\frac{1}{2}, \frac{1}{2})$ representation of the Lorentz group is equivalent (up to a similarity transformation) to the the Lorentz group itself (the 4-vector representation) while the same-dimension representation $(\frac{1}{2}, 0) \oplus (0, \frac{1}{2})$ is not. Hint: argue that $(\frac{1}{2}, \frac{1}{2}) = (\frac{1}{2}, 0) \otimes (0, \frac{1}{2})$ and recall the $\{\phi^{\dagger}\phi, \phi^{\dagger}\vec{\sigma}\phi\}$ exercise.
- 6. For our spin- $\frac{1}{2}$ field calculate the canonical equal-time anti-commutation relation,

$$\{\psi(t, \vec{r}), \Pi(t, \vec{r}')\}, \qquad (1)$$

where Π is the conjugate momentum,

$$\Pi = \frac{\partial \mathcal{L}}{\partial (\partial_0 \psi)} \,. \tag{2}$$

7. When we turned (by correspondingly commuting and anti-commuting) the Hamiltonians of the scalar and the Dirac fields into the canonical form (with the number-of-particle operators) we disregared some infinite contributions. What are the signs of this contributions for the scalar and for the Dirac fields?