ex-dirac : November 23, 2016

Exercises: spin- $\frac{1}{2}$

 Show that after a rotation by 2π a spinor changes sign.
 Hint: a 'spinor' is an object which under rota-

tions of coordinates is transformed by a $(j = \frac{1}{2})$ representation of the rotation group.

2. Adjoint representation Consider a group of objects $\{g(\alpha)\}$ with infinitesimal element

$$g(d\alpha) = 1 + i \sum_{k=1}^{n} I_k d\alpha_k$$

and Lie algebra

$$I_k I_m - I_m I_k = i \sum_{l=1}^n C_{km}^{\ l} I_l \,.$$

• For a given β consider an automorphism

$$g(\alpha) \to h(\alpha) \doteq g(\beta)g(\alpha)g(\beta)^{-1}$$
,

and show that the generators J_k of the group $\{h\}$ are linear combinations of the generators I_k of the group $\{g\}$,

$$J_k = \sum_{l=1}^n A_{kl}(\beta) I_l$$

where $A_{kl}(\beta)$ are certain $n \times n$ matrices.

• Show that matrices A form a group which is a representation of the group $\{g\}$. This representation is called the adjoint representation.

• Show that the generators \mathcal{I}_k of the adjoint representation,

$$A_{kl}(d\beta) = \delta_{kl} + i \sum_{m} (\mathcal{I}_m)_{kl} d\beta_m$$

are matrices with the matrix elements

$$(\mathcal{I}_k)_{lm} = iC_{lk}{}^m = -iC_{kl}{}^m$$

• What is the adjoint representation of the SU(2) group?

3. Let ϕ and χ be spinors which transforms under correspondingly $(\frac{1}{2}, 0)$ and $(0, \frac{1}{2})$ representation of the Lorentz group. Argue that the objects $\{\phi^{\dagger}\phi, \phi^{\dagger}\vec{\sigma}\phi\}$ and $\{\chi^{\dagger}\chi, -\chi^{\dagger}\vec{\sigma}\chi\}$ transform as four-vectors under Lorentz transformation.

Hints:

• For simplicity consider only infinitesimal transformations,

$$\phi \to (1 + i \frac{1}{2} \vec{\sigma} d\vec{w}) \phi \,,$$

$$\chi \to (1+i\frac{1}{2}\vec{\sigma}d\vec{w}^*)\chi\,,$$

and consider separately a rotation around z-axis,

$$\vec{\sigma}d\vec{w} = \sigma_z d\theta \,, \tag{1}$$

and a velocity boost in the x-direction,

$$\vec{\sigma}d\vec{w} = \sigma_x i dv \,. \tag{2}$$

4. Show that the Lagrangian

$$\mathcal{L} = \frac{1}{2} \left(\bar{\psi} \gamma^a \partial_a \psi + \partial_a \bar{\psi} \gamma^a \psi \right) - m \bar{\psi} \psi$$

does not lead to a good Euler-Lagrange equation.

- 5. Show by direct calculation that the current $\bar{\psi}\gamma^a\psi$ conserves if ψ is a solution of the Dirac equation.
- 6. Calculate the energy-momentum tensor for the spin- $\frac{1}{2}$ field with the Lagrangian

$$\mathcal{L} = \bar{\psi}(i\gamma^a\partial_a - m)\psi.$$
(3)

7. Show that if bispinor ψ is a solution to the Dirac equation, then its components satisfy the Klein-Gordon equation.

Hint: multiply the Dirac equation by $(i\gamma^b\partial_b + m)$ from the left and use the anticommutator

$$\gamma^a \gamma^b + \gamma^b \gamma^a = 2\eta^{ab} \,, \tag{4}$$

where η^{ab} is the Minkowski metric tensor.

1