Exercises: spin- $\frac{1}{2}$

1. Show that after a rotation by $2 \pi$ a spinor changes sign.
Hint: a 'spinor' is an object which under rotations of coordinates is transformed by a $(j=$ $\frac{1}{2}$ ) representation of the rotation group.
2. Adjoint representation

Consider a group of objects $\{g(\alpha)\}$ with infinitesimal element

$$
g(d \alpha)=1+i \sum_{k=1}^{n} I_{k} d \alpha_{k}
$$

and Lie algebra

$$
I_{k} I_{m}-I_{m} I_{k}=i \sum_{l=1}^{n} C_{k m}^{l} I_{l}
$$

- For a given $\beta$ consider an automorphism

$$
g(\alpha) \rightarrow h(\alpha) \doteq g(\beta) g(\alpha) g(\beta)^{-1}
$$

and show that the generators $J_{k}$ of the group $\{h\}$ are linear combinations of the generators $I_{k}$ of the group $\{g\}$,

$$
J_{k}=\sum_{l=1}^{n} A_{k l}(\beta) I_{l}
$$

where $A_{k l}(\beta)$ are certain $n \times n$ matrices.

- Show that matrices $A$ form a group which is a representation of the group $\{g\}$. This representation is called the adjoint representation.
- Show that the generators $\mathcal{I}_{k}$ of the adjoint representation,

$$
A_{k l}(d \beta)=\delta_{k l}+i \sum_{m}\left(\mathcal{I}_{m}\right)_{k l} d \beta_{m}
$$

are matrices with the matrix elements

$$
\left(\mathcal{I}_{k}\right)_{l m}=i C_{l k}^{m}=-i C_{k l}^{m} .
$$

- What is the adjoint representation of the $S U(2)$ group?

3 . Let $\phi$ and $\chi$ be spinors which transforms under correspondingly $\left(\frac{1}{2}, 0\right)$ and ( $0, \frac{1}{2}$ ) representation of the Lorentz group. Argue that the objects $\left\{\phi^{\dagger} \phi, \phi^{\dagger} \vec{\sigma} \phi\right\}$ and $\left\{\chi^{\dagger} \chi,-\chi^{\dagger} \vec{\sigma} \chi\right\}$ transform as four-vectors under Lorentz transformation.
Hints:

- For simplicity consider only infinitesimal transformations,

$$
\phi \rightarrow\left(1+i \frac{1}{2} \vec{\sigma} d \vec{w}\right) \phi
$$

$$
\chi \rightarrow\left(1+i \frac{1}{2} \vec{\sigma} d \vec{w}^{*}\right) \chi
$$

and consider separately a rotation around $z$ axis,

$$
\begin{equation*}
\vec{\sigma} d \vec{w}=\sigma_{z} d \theta, \tag{1}
\end{equation*}
$$

and a velocity boost in the $x$-direction,

$$
\begin{equation*}
\vec{\sigma} d \vec{w}=\sigma_{x} i d v . \tag{2}
\end{equation*}
$$

4. Show that the Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left(\bar{\psi} \gamma^{a} \partial_{a} \psi+\partial_{a} \bar{\psi} \gamma^{a} \psi\right)-m \bar{\psi} \psi
$$

does not lead to a good Euler-Lagrange equation.
5. Show by direct calculation that the current $\bar{\psi} \gamma^{a} \psi$ conserves if $\psi$ is a solution of the Dirac equation.
6. Calculate the energy-momentum tensor for the spin- $\frac{1}{2}$ field with the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\bar{\psi}\left(i \gamma^{a} \partial_{a}-m\right) \psi \tag{3}
\end{equation*}
$$

7. Show that if bispinor $\psi$ is a solution to the Dirac equation, then its components satisfy the Klein-Gordon equation.
Hint: multiply the Dirac equation by $\left(i \gamma^{b} \partial_{b}+\right.$ $m$ ) from the left and use the anticommutator

$$
\begin{equation*}
\gamma^{a} \gamma^{b}+\gamma^{b} \gamma^{a}=2 \eta^{a b} \tag{4}
\end{equation*}
$$

where $\eta^{a b}$ is the Minkowski metric tensor.

