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Massive spin-1 field

The lowest-dimension representation of the Lorentz

group containing spin-1 is (%, %) The matrices of
this representations transform four-vectors ¢ =

{#°, ¢}

However a four-vector contains a rotation scalar,
¢, which is a spin-0 object. This redundant
component has to be excluded by imposing some
additional condition, for example, the (covariant)
Lorenz condition®,

Ba® = 0. 1)

For a plane wave % = e%e~P* where €? is a four-
vector and p.p® = m?, the Lorenz condition gives
€*p, = 0. In the rest frame (p = 0) the latter leads
to € = 0 indicating that only three components
of the vector € are independent — which is indeed
consistent with the concept of a spin-1 field.

Lagrangian

A suitable Lagrangian (real bilinear form of fields
and field derivatives) is given as

(2)

This Lagrangian is a sum of Klein-Gordon La-
grangians for each field component ¢”. Therefore
most of the results from the scalar fields immedi-
ately apply for spin-1 fields. In particular, the spin-
1 field must be a bosonic field with bosonic annihi-
lation/generation operators.

L= —0,050" + mPp” .

Euler-Lagrange equation

The general form of the Euler-Lagrange equations,

P oc oL

“0(0ay)  O(gp)’

applied to the Lagrangian (2) leads to a system of

decoupled Klein-Gordon equations for each compo-
nent gob,

(0,0" +m?) o’ =0. (4)

The plane wave solutions are analogous to those for
the scalar field.

3)

Normal modes

Recalling the results from quantization of the scalar
field one can readily write down a general solution
to the spin-1 Euler-Lagrange equations in the nor-
mal mode representation,

1 —ikx T x ikx
Y = %\: \/Tik (akAeAe + bk/\€A6+ ) , (5)
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named after Danish physicist Ludvig Lorenz.

where the spin functions €, are chosen in the rest
frame — where (e,)? = 0 — as eigenfunction of
the I3 generator of the rotation group, Isey = A€y,
A =1,0,—1. They are normalized as 616)\/ = -

The generation/annihilation operators a and b
satisfy bosonic commutation relations,

(6)

T T —
ak)\ak/\ — ak/\akA = 5kk’5)\)\’ .

Electromagnetic field

Electromagnetic field is a real massless spin-1 field.
It is described by a real four-vector potential A®.
The Lagrangian of the electromagnetic field in
Gaussian units is given as

L= —iaaAbaaAb. (7
8

Equivalently, the Lagrangian can be written as

1
L=———F"Fy,
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where F is the electromagnetic tensor,

Fb = 9aAb — 9bAe . (9)

Gauge invariance

The absence of the mass term in the Lagrangian
leads to an important symmetry, called gauge sym-
metry: the Lagrangian is invariant under the so-
called gauge transformation,

A% — A4+ 0%, (10)
where ¢ is an arbitrary scalar function of coordi-
nates. Indeed the electromagnetic tensor (9) and
therefore the Lagrangian (8) are apparently invari-
ant under the gauge transformation (10).

The Lorenz condition limits the class of arbitrary
function in the gauge transformation to harmonic

functions
00,90 =0. (11)

Normal modes

The Euler-Lagrange equation for the components
of the four-potential is the zero-mass Klein-Gordon
equation,

9°9,A" = 0. (12)

Let us look for the solutions in the form of a plane

wave,
27 .

Alk) = 2 ek —ikx

(k) = | e(kye,

where k = {w,k}, w = |k|, k¥ = 0 (since photon
mass is zero), and e(k) is a four-vector.

(13)



From the Lorenz condition,

ke =we® —ké=0, (14)

it follows that € # 0, that is the amplitude e(k) is
not time-like.

A gauge transformation with ¢ = ,/%’Tife_“”‘,
where f is a constant scalar, leads to a transforma-
tion of the amplitude

€q — €q + fka. (15)

The scalar f can always be chosen such that in a
certain frame

e={0,e} , ke =0; (16)

and
Ay=0, VA=0. (17)

The gauge (17) is usually referred to as Coulomb
gauge, transverse gauge, or radiation gauge. In this
gauge the electromagnetic field can be represented
al

S
A= —2 (ak)\e)\e_ikl' +al et e“”') (18)
%A: \/ N kACA )

where A = 1, 2 are the two orthogonal polarizations,
exey =0, ek=0. (19)

Since A® is real, there are no “anti”-particle opera-
tors in the normal mode expansion (18) — real fields
have only one type of particles.

The generation/annihilation operators axa, ali/\
satisfy the bosonic commutation relations,

akAaL)\ - CLL/\ak)\ = 6kk’6)\/\' . (20)

Spin-statistics theorem

The spin-statistics theorem states that relativisti-
cally covariant canonical quantum field theory with
positive definite energy density predicts that fields
with integer spin are necessarily bosonic, and fields
with half-integer spin — necessarily fermionic.



