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note7 : November 23, 2014

Canonical quantization of spin—% field
Euler-Lagrange equation, current, energy

The simplest covariant Lagrangian for a spin—% field
is given as'
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The corresponding Euler-Lagrange equation,
(i7*0a —m)yp =0,

is called the Dirac equation.
The Noether’s conserved current is
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And the canonical energy density is?
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Normal modes

Let us find the complete basis of solutions to the
Dirac equation in the form of plane waves,
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where e7P% = ¢ , and where the spinors ¢
and x are no longer functions of time and coordi-
nates. Substituting the plane-wave ansatz (5) into

the Dirac equation (2) gives, in the Dirac basis,
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This homogeneous system of linear algebraic equa-
tions has a non-trivial solution only when the deter-
minant of the matrix is zero: this gives® the usual
relativistic relation between F and p,
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Again there are both positive- and negative-
frequency solutions
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where p* = {Ep, p}, p is an arbitrary wave-vector,
and By =+
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m?2 + p'2 is the positive square root.
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From the Dirac equation, the positive- and
negative-frequency bispinors uz and vy are
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where ¢ and x are arbitrary spinors.

There are two linearly independent spinors,
which can be chosen for the complete basis. For
example, one can choose eigen-spinors of the %03
operator in the frame where p=0,

S0503 = b (10)

and similarly for the spinor y.

Charge and normalization The charge density
for the spin—% field is
3=y =iy (11)

The charge Q = fV:l d3z5° of the normal modes is
then given as
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Unlike the scalar field, the spin—% field seem-

ingly gives positive charges for both positive- and
negative-frequency solutions.

Unit charge condition for a plane-wave leads to
the normalizations

u;ux = UI\U)\/ =\, (14)
which are obtained by choosing
Show =xhor = o (1)
With this normalization
UnUy = —T\Uy = g; Oxn - (16)

Energy From (4) it follows that the positive-
energy solution has positive energy,
E (ueiim) = uypu + muu = By (17)

while the negative-energy solution seemingly has
negative energy,

E (vet™) = 09(—p)v + mvv = —Ey . (18)
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Normal mode representation

An arbitrary solution to the Dirac equation can
be represented as a linear combination of normal
modes,
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The charge of the field is then given as
Q= Z (a;)\aﬁ)\ + bﬁkb;r;')) , (20)
A
and the Hamiltonian,

H = ZEﬁ (a}kam - bﬁ)‘bjﬁ')\) . (21)
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Generation/annihilation operators

The only way to make sense of the charge and
Hamiltonian is to postulate anti-commutation re-
lation for the spin—% operators,
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With these postulates the charge and the energy
take the form as prescribed by the experiment,

Q= Z (npx — ) (24)
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where ng, = a;,/\,aﬁ/\ and nzy = b;rj,/\/bﬁ/\ are the
number-of-particle and number-of-anti-particle op-
erators with eigenvalues 0 and 1.

In canonical quantum field theory Spin—% parti-
cles are necessarily fermions.



