Finite rotation matrix

The generators can recover not only infinitesimal, $g(d \alpha)=1+i I d \alpha$, but (in principle) also finite elements of the group (with certain caveats). It is especially easy with additive parameters, where $g(\alpha+d \alpha)=g(\alpha) g(d \alpha)$. Indeed, in this case

$$
\begin{equation*}
g(\alpha+d \alpha)=g(d \alpha) g(\alpha)=(1+i I d \alpha) g(\alpha) \tag{1}
\end{equation*}
$$

and thus the group element $g(\alpha)$ satisfies the differential equation

$$
\begin{equation*}
\frac{\partial g(\alpha)}{\partial \alpha}=i I g(\alpha) \tag{2}
\end{equation*}
$$

with the initial condition $g(0)=1$. One can check by direct substitution that the solution to this equation is exponential function, understood as an infinite Taylor series

$$
\begin{equation*}
g(\alpha)=e^{i I \alpha} \equiv \sum_{n=0}^{\infty} \frac{(i I \alpha)^{n}}{n!} \tag{3}
\end{equation*}
$$

For example, for the rotation around a given axis \vec{n} the rotation angle θ is an additive parameter of the rotation matrix $R(\vec{n}, \theta)$,

$$
\begin{align*}
R(\vec{n}, \theta+d \theta) & =R(\vec{n}, \theta) R(\vec{n}, d \theta) \\
& =(1+i \vec{I} \cdot \vec{n} d \theta) R(\vec{n}, \theta) \tag{4}
\end{align*}
$$

and thus the rotation matrix satisfies the differential equation

$$
\begin{equation*}
\frac{d R}{d \theta}=i \vec{I} \cdot \vec{n} R \tag{5}
\end{equation*}
$$

with the boundary condition $R(\vec{n}, 0)=1$. The solution is given by the Taylor series,

$$
\begin{equation*}
R(\vec{n}, \theta)=e^{i \vec{I} \cdot \vec{n} \theta} \equiv 1+i \vec{I} \cdot \vec{n} \theta+\frac{(i \vec{I} \cdot \vec{n} \theta)^{2}}{2!}+\ldots \tag{6}
\end{equation*}
$$

In practice for a finite-dimension representation there is only a finite number of terms in the series.

Direct product of two representations

In the field theory we often have to work with different types of products of covariant quantities, like $\partial_{a} j^{a}$ or $\partial_{a} A^{b}$. We need to know how such products transform.

For simplicity we shall only consider matrices, although the concepts are also defined for abstract groups.

A direct product $g \otimes h$ of two matrices g and h is a matrix made of all possible (and suitable arranged) pairwise products of matrix elements of g and h,

$$
g \otimes h=\left[\begin{array}{ccc}
g_{11} h_{11} & \ldots & \ldots \tag{7}\\
\ldots & \cdots & \ldots \\
\cdots & \cdots & g_{n_{g} n_{g}} h_{n_{h} n_{h}}
\end{array}\right]
$$

where n_{g} and n_{h} are the sizes of g and h. The size of the direct product is $n_{g \otimes h}=n_{g} n_{h}$.

If the matrices g and h act on column-vectors v_{g} and v_{h} of sizes n_{g} and n_{h}, then the matrices $g \otimes h$ act on a column-vector $v_{g} \otimes v_{h}$ of size $n_{g} n_{h}$ consisting of all pairwise products of the elements of vectors v_{g} and v_{h},

$$
v_{g} \otimes v_{h}=\left[\begin{array}{c}
\left(v_{g}\right)_{1}\left(v_{h}\right)_{1} \tag{8}\\
\ldots \\
\left(v_{g}\right)_{n_{g}}\left(v_{h}\right)_{n_{h}}
\end{array}\right] .
$$

A direct sum $g \oplus h$ of two matrices g and h is a block-diagonal matrix made of matrices g and h,

$$
g \oplus h=\left[\begin{array}{ll}
g & 0 \tag{9}\\
0 & h
\end{array}\right]
$$

The size of the direct sum is $n_{g \oplus h}=n_{g}+n_{h}$.
If the matrices g and h act on column-vectors v_{g} and v_{h} of sizes n_{g} and n_{h}, then the matrices $g \oplus h$ act on a column-vector $v_{g} \oplus v_{h}$ of size $n_{g}+n_{h}$ which is made of elements of both vectors v_{g} and v_{h},

$$
v_{g} \oplus v_{h}=\left[\begin{array}{l}
v_{g} \tag{10}\\
v_{h}
\end{array}\right]
$$

Suppose we have two (different) representations, $G=\{g\}$ and $H=\{h\}$, of some Lie group $\{\Lambda\}$, with the corresponding infinitesimal elements ${ }^{1}$

$$
\begin{align*}
g & =1_{G}+i \vec{I}_{G} \vec{\alpha} \tag{11}\\
h & =1_{H}+i \vec{I}_{H} \vec{\alpha} \tag{12}
\end{align*}
$$

where $\vec{\alpha}$ are the parameters of the group $\{\Lambda\}$.
It is easy to show that the generators $I_{G \otimes H}$ of a direct product $G \otimes H$ of two representations G and H of the same group is a (Kronecker) sum of the corresponding generators I_{G} and I_{H},

$$
\begin{equation*}
\vec{I}_{G \otimes H}=\vec{I}_{G} \otimes 1_{H}+1_{G} \otimes \vec{I}_{H} \tag{13}
\end{equation*}
$$

Indeed,

$$
\begin{array}{r}
g \otimes h=\left(1_{G}+i \vec{I}_{G} \vec{\alpha}\right) \otimes\left(1_{H}+i \vec{I}_{H} \vec{\alpha}\right) \\
=1_{G} \otimes 1_{H}+i\left(\vec{I}_{G} \otimes 1_{H}+1_{G} \otimes \vec{I}_{H}\right) \vec{\alpha} \\
=1+i \vec{I}_{G \otimes H} \vec{\alpha} \\
\Rightarrow \vec{I}_{G \otimes H}=\vec{I}_{G} \otimes 1_{H}+1_{G} \otimes \vec{I}_{H} \tag{15}
\end{array}
$$

Clebsch-Gordan theorem

The direct product $\left(j_{1}\right) \otimes\left(j_{2}\right)$ of two irreducible representations of the rotation group is a reducible

[^0]representation which can be reduced into a direct sum of irreducible representations,
\[

$$
\begin{equation*}
\left(j_{1}\right) \otimes\left(j_{2}\right)=\sum_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}} \oplus(j) \tag{16}
\end{equation*}
$$

\]

Example: a direct product $\vec{a} \otimes \vec{b}$ of two vectors, $(1) \otimes(1)$, reduces to a direct sum of a scalar $(j=0)$, an antisymmetric tensor $(j=1)$, and a symmetric tensor with zero trace $(j=2)$,
$\vec{a} \otimes \vec{b}=(\vec{a} \vec{b}) \oplus(\vec{a} \times \vec{b}) \oplus\left(a_{i} b_{j}+a_{j} b_{i}-\frac{2}{3}(\vec{a} \vec{b}) \delta_{i j}\right)$.

Irreducible representations of the Lorentz group

With the complex parameterization

$$
\begin{equation*}
d \vec{w}=\vec{n} d \theta+i d \vec{v} \tag{18}
\end{equation*}
$$

the infinitesimal Lorentz transformation is given as

$$
\begin{equation*}
\Lambda=1+i \vec{M} d \vec{w}+i \vec{N} d \vec{w}^{*} \tag{19}
\end{equation*}
$$

where the generators M and N satisfy the Lie algebra

$$
\begin{align*}
M_{k} M_{l}-M_{l} M_{k} & =i \sum_{m} \epsilon_{k l m} M_{m} \tag{20}\\
N_{k} N_{l}-N_{l} N_{k} & =i \sum_{m} \epsilon_{k l m} N_{m} \tag{21}\\
M_{k} N_{l}-N_{l} M_{k} & =0 \tag{22}
\end{align*}
$$

that is, two independent rotation Lie algebras. An infinitesimal matrix t from a representation of the Lorentz group is then given as

$$
\begin{equation*}
t=\mathbf{1}_{M} \otimes \mathbf{1}_{N}+i \vec{M} \otimes \mathbf{1}_{N} d \vec{w}+i \mathbf{1}_{M} \otimes \vec{N} d \vec{w}^{*} \tag{23}
\end{equation*}
$$

where $\mathbf{1}_{M}$ and $\mathbf{1}_{N}$ are the unit matrices in the spaces of M and N generators.

Thus an irreducible representation of the Lorentz group is determined by two numbers (m, n), each taking non-negative integer or half-integer values. The dimensions of the M and N-generators are then $(2 m+1)$ and $(2 n+1)$ correspondingly. The dimension of the representation is $(2 m+1)(2 n+1)$.

Direct product of two irreducible representations There exists a similar theorem for the Lorentz group,

$$
\begin{equation*}
\left(j_{1}, k_{1}\right) \otimes\left(j_{2}, k_{2}\right)=\sum_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}} \sum_{k=\left|k_{1}-k_{2}\right|}^{k_{1}+k_{2}} \oplus(j, k) \tag{24}
\end{equation*}
$$

Rotational properties of an irreducible representation of the Lorentz group If we only consider rotations, $d \vec{v}=0$, the infinitesimal element of a Lorentz group representation (23) becomes

$$
\begin{equation*}
\left.g\right|_{d \vec{v}=0}=1+i\left(\vec{M} \otimes \mathbf{1}_{N}+\mathbf{1}_{M} \otimes \vec{N}\right) \vec{n} d \theta \tag{25}
\end{equation*}
$$

which can be identified as the Kronecker sum (20) of two generators with rotation Lie algebra. A Kronecker sum of generators corresponds to a direct product of their representations.

Thus, under rotations, an irreducible representations $\left(j_{1}, j_{2}\right)$ of the Lorentz group reduces to a direct sum of irreducible representations of the rotation group (j) with $j=\left|j_{1}-j_{2}\right|, \ldots, j_{1}+j_{2}$.

Example: a four-vector $\{E, \mathbf{p}\}$ transforms under $\left(\frac{1}{2}, \frac{1}{2}\right)$ representation of the Lorentz group and under rotations reduces to a direct sum of a scalar E and a vector \mathbf{p}.

Parity transformation and irreducible representations of the Lorentz group Parity transformation is the simultaneous change of spatial coordinates,

$$
\begin{equation*}
P\binom{t}{\vec{x}}=\binom{t}{-\vec{x}} . \tag{26}
\end{equation*}
$$

The parity transformation, like rotations, reflects our freedom in choosing frames of reference for a description of physical systems and therefore must be included in the group of coordinate transformations in the principle of covariance.

Under the parity transformation the rotation generators do not change, $\vec{J} \rightarrow \vec{J}$, while the velocity-boost-generators change sign, $\vec{K} \rightarrow-\vec{K}$. The "optimal" generators $\vec{M}=\frac{1}{2}(\vec{J}-i \vec{K})$ and $\vec{N}=\frac{1}{2}(\vec{J}+i \vec{K})$ transform into each other, $\vec{M} \leftrightarrow \vec{N}$.
Thus an irreducible representation of the Lorentz group (j_{1}, j_{2}) transforms under parity transformation into a representation $\left(j_{2}, j_{1}\right)$,

$$
\begin{equation*}
\left(j_{1}, j_{2}\right) \stackrel{\mathcal{P}}{\longleftrightarrow}\left(j_{2}, j_{1}\right) \tag{27}
\end{equation*}
$$

Consequently, if $j_{1} \neq j_{2}$, the representation of the covariance group of coordinate transformations has to be enlarged to the direct sum $\left(j_{1}, j_{2}\right) \oplus\left(j_{2}, j_{1}\right)$.

[^0]: ${ }^{1} \vec{I} \vec{\alpha} \equiv \sum_{k} I_{k} \alpha_{k}$

