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Canonical quantization of a free
scalar field

Lagrangian, current, energy

If the equations of motion — the Euler-Lagrange
equations — for a field are to be linear, second or-
der differential equations, the Lagrangian must be
quadratic in terms of the field and must contain
only the field itself and its first derivatives.

And the Lagrangian must also be a real Lorentz
scalar.

For a complex scalar field φ these conditions al-
low basically only one possible Lagrangian,

L = ∂aφ∗∂aφ−m2φ∗φ , (1)

where m is some constant (later to be identified
with the mass of the field quantum).

The Euler-Lagrange equation of this Lagrangian
is the Klein-Gordon equation,

∂a∂aφ + m2φ = 0 . (2)

The conserved current is

ja .= −i

(
∂L

∂(∂aφ)
φ− ∂L

∂(∂aφ∗)
φ∗

)
= i(φ∗∂aφ− ∂aφ∗φ) . (3)

The energy density is the time-time component
of the energy-momentum tensor,

T 0
0

.=
∂L

∂(∂0φ)
∂0φ +

∂L
∂(∂0φ∗)

∂0φ
∗ − L

= ∂tφ
∗∂tφ +∇φ∗∇φ + m2φ∗φ. (4)

Normal modes

Normal modes are orthogonal and normalized so-
lutions of the field equation with a given boundary
condition.

Normal modes make a complete basis. Any other
solution of the field equations with the same bound-
ary condition can be represented as a linear super-
position of normal modes.

Plane waves, spherical waves or stationary waves
are often chosen as normal modes.

In canonical quantization the normal modes be-
come quanta of the field.

Plane wave solutions

Let us try to find a solution of the Klein-Gordon
equation in the form of a plane wave,

φ(x) = e−ikx , (5)

where ka .= {ω,k}, kx
.= kaxa = ωt− kr.

Substituting (5) into the Klein-Gordon equation
(2) gives

k2 = m2 , (6)

where k2 .= kaka = ω2−k2. This equation is appar-
ently the well known relativistic relation between
energy, mass and momentum of a particle,

ω2 = m2 + k2 . (7)

Thus, a plane wave with an arbitrary wave-vector
k is a solution to the Klein-Gordon equation (2) as
long as the frequency ω satisfies the relation (7).

Note that a complete basis must include both
positive-frequency solutions with

ω = +
√

m2 + k2 , (8)

and negative-frequency solutions with

ω = −
√

m2 + k2 . (9)

Periodic boundary condition

Let us assume that our field is contained in a box
of length L, much larger that the typical length
of the physical system under consideration. Then
the boundary condition on the surface of the box
should be of little importance. We can then choose
the boundary condition to our liking, and we choose
the periodic boundary condition,

φ|xi=L = φ|xi=0 , i = 1, 2, 3 . (10)

For plane-waves eikr this means that the wave-
vector k has to be of the form

kx =
2π

L
nx , ky =

2π

L
ny , kz =

2π

L
nz , (11)

where nx, ny, nz are integer numbers.
With this boundary condition the plane-waves

with different wave-vectors are orthogonal,∫
V

d3xe−ik′xeikx = V δk′k , (12)

where δk′k is the Kronecker delta-symbol. The vol-
ume V should vanish from all final expressions,
therefore we can just as well put it equal unity from
the very beginning.

Normalization of normal modes to unit
charge

A normal mode can be normalized covariantly to a
unit charge Q, where

Q(φ) .=
∫

V

dV j0 =
∫

dV i (φ∗∂tφ− ∂tφ
∗φ) . (13)
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Substituting e−ikx into (13) gives the total charge
of a plane wave,

Q(e−ikx) = 2ω . (14)

Note that positive-frequency solutions have posi-
tive charge, while negative-frequency solutions have
negative charge.

Thus, a complete basis of orthogonal and nor-
malized solutions to the Klein-Gordon equation can
be chosen as a set of positive-frequency, φ+

k , and
negative-frequency, φ−k , plane-wave normal modes

φ+
k =

1√
2ωk

e−ikx , φ−k =
1√
2ωk

e+ikx . (15)

where ka .= {ωk,k} and ωk
.= +

√
m2 + k2 is the

positive square root.

Normal mode representation

Any solution φ to the field equation can be repre-
sented as a superposition of the normal modes,

φ(x) =
∑
k

1√
2ωk

(
ake−ikx + b∗keikx

)
, (16)

where the expansion coefficients ak and bk are com-
plex numbers (soon to become operators).

The Hamiltonian in the normal mode represen-
tation is equal

H
.=

∫
dV T 0

0 =
∑
k

ωk(a∗kak + bkb∗k) , (17)

and the charge is equal

Q
.=

∫
dV j0 =

∑
k

(a∗kak − bkb∗k) . (18)

Note that the positive and negative frequency
modes have the same energy but opposite charges.
Like particles and antiparticles.

Canonical quantization

Experiment shows that the energy E and charge Q
of a system of noninteracting particles/antiparticles
are given as

E =
∑
k

ωk(nk + n̄k) , (19)

Q =
∑
k

(nk − n̄k) , (20)

where nk (n̄k) is the number of particles (antiparti-
cles) with momentum k, both numbers being non-
negative integers.

Mathematically the number of particles must
then be represented by an operator — a matrix
— with non-negative integer eigenvalues, acting on
some abstract space of states.

Generation-annihilation operators

Comparing (19) and (20) with (17) and (18) we
must postulate that the object a∗kak must be the
number of particles operator,

nk = a†kak , (21)

with nonnegative integer eigenvalues.
This can be fulfilled if a†k and ak — and simi-

larly b†k and bk — are themselves operators (called
generation-annihilation operators) either with com-
mutation relations

aka†k′ − a†k′ak = δkk′ ,

bkb†k′ − b†k′bk = δkk′ , (22)

(all other commutators are equal zero); or with
anti-commutation relations

aka†k′ + a†k′ak = δkk′ ,

bkb†k′ + b†k′bk = δkk′ , (23)

(all other anti-commutators are equal zero).
The commutation relations (22) lead to the num-

ber of particle operator with eigenvalues nk ∈
{0, 1, 2, . . . }. In other words, any number of par-
ticles can be in the same state. Such particles are
called bosons.

With the anti-commutation relations (23) the
number of particle operator has only two eigenval-
ues nk ∈ {0, 1}. That is, at most one particle can
occupy a given state. These particles are called
fermions.

Using the bosonic commutation relations (22) we
can rewrite the scalar Hamiltonian (17) as

H =
∑
k

ωk(a†kak + b†kbk) +
∑
k

ωk , (24)

which exactly corresponds to (19) except for the
last term – a diverging integral. However, this term
contains no operators – it is simply a constant shift
of zero-energy. Therefore it can be safely ignored.

Spin and statistics

Note that we could not use the anti-commutation
relation (23) in the scalar Hamiltonian (17) since in
this case it would take the form

H =
∑
k

ωk(a†kak − b†kbk) , (25)

which is not positive defined.
Thus in a canonical field theory the relation be-

tween spin and statistics follows automatically from
the positive definiteness of the energy.


