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Higgs mechanism

The Higgs mechanism enables the massless gauge
bosons in a gauge theory to acquire effective mass
through interaction with auxiliary fields (called the
Higgs fields). The mechanism is based on the phe-
nomenon of spontaneous symmetry breaking.

In the standard model the Higgs mechanism gen-
erates the masses of the W± and Z weak gauge
bosons.

Spontaneous symmetry breaking

Spontaneous symmetry breaking takes place when
the Lagrangian of a system is symmetric while the
ground state isn’t.

Here is the canonical example: a complex self-
interacting scalar (Higgs) field ϕ with a globally
U(1) symmetric Lagrangian,

L = ∂aϕ
?∂aϕ− VMH(ϕ?ϕ) (1)

where the potential energy VMH has the “Mexican
hat” form (see fig. 1),

VMH(ϕ?ϕ) =
λ2

4

(
ϕ?ϕ−m2

)2
, (2)

where λ is a dimensionless constant and m is a con-
stant with the dimension of mass1.
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Figure 1: “Mexican hat” potential (2) in arbitrary
units as function of the real, <ϕ, and imaginary,
=ϕ, parts of the complex scalar field ϕ.

The lowest energy state of the system is reached
for a finite (non-zero) field ϕ0 (often called Higgs
condensate or vacuum expectation value) such that
ϕ?0ϕ0 = m2. Due to the symmetry of the La-
grangian there are infinitely many vacuum states
ϕ0 = meiξ, where 0 ≤ ξ < 2π.

1hypothetical particles with negative square mass are
called tachyons.

Breaking the symmetry means choosing a par-
ticular vacuum state, e.g. ϕ0 = m. Let us look at
small fluctuations around this vacuum state in the
form

ϕ = (m+ η)eiθ/m . (3)

In terms of the new fields η and θ the Lagrangian
becomes (up to the second order terms)

L = ∂aη∂
aη − λ2m2η2 + ∂aθ∂

aθ. (4)

This Lagrangian apparently describes a massless
boson θ (called Goldstone boson) and a massive
boson η (to be called Higgs boson in the standard
model) with the (positive) mass mH = λm.

This simple model actually illustrates the Gold-
stone theorem which states that whenever a con-
tinuous symmetry is spontaneously broken, a mass-
less (or light, if the symmetry was not exact) scalar
particle appears in the spectrum of the system. It
corresponds to excitations along the “symmetry di-
rection”.

Higgs mechanism

Higgs mechanism is spontaneous symmetry break-
ing in a gauge theory.

Let us make our U(1) symmetric model (1) gauge
invariant by coupling our Higgs field ϕ to a real
gauge field Ba,

L = D?
aϕ

?Daϕ− VMH(ϕ?ϕ) + LYM , (5)

where Da = ∂a+ igBa is the gauge-group covariant
derivative, and

LYM = −1

4
FabF

ab , Fab =
1

ig
[Da, Db] (6)

is the Yang-Mills Lagrangian of the free gauge field
Ba.

Again let us look for small fluctuations of the
Higgs field from the condensate, ϕ = (m+ η)eiθ/m.
The covariant derivative,

Daφ = (∂a + igBa)(m+ η)eiθ/m , (7)

with up to linear terms in the fields is given as

Daφ ≈ (∂aη + i∂aθ + igmBa)eiθ/m . (8)

Introducing the new field

B′a = Ba +
1

gm
∂aθ , (9)

the derivative becomes

Daφ ≈ (∂aη + igmB′a)eiθ/m . (10)
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Now the kinetic term in the Lagrangian (5) becomes

D?
aϕ

?Daϕ ≈ ∂aη∂aη + g2m2B′aB′a . (11)

It is easy to see that this is actually a result of the
gauge transformation{

ϕ → ϕ′ = e−iθ/mϕ

Ba → B′a = Ba + 1
gm∂aθ .

(12)

of the original fields ϕ = (m+ η)eiθ/m and Ba.
Indeed,

D′aϕ
′ = (∂a + igB′a)(m+ η) ≈ ∂aη+ igmB′a , (13)

and

D′∗a ϕ
′∗D′aϕ

′ ≈ ∂aη∂aη + g2m2B′aB′a . (14)

Finally the total Lagrangian becomes

L = ∂aη∂
aη − λ2m2η2 + LYM + g2m2B′aB

′a

+(interaction terms) .
(15)

This Lagrangian describes a massive scalar Higgs
boson η and a massive vector boson Ba.

The mass of the boson, mB = gm = gϕ0, is de-
termined by the Higgs condensate φ0 and the cou-
pling g between the Higgs and the gauge fields.

Before the symmetry breaking there were 4 de-
grees of freedom: two in the complex Higgs field ϕ
and two in the real massless (and hence transverse)
gauge field Ba.

After the symmetry breaking there appeared a
massive real scalar boson η (Higgs boson); the
gauge boson acquired a finite mass gm and there-
fore lost its transverse character; the θ field has
turned into the longitudinal polarization compo-
nent of the gauge field and disappeared from the
Lagrangian: in total again 4 degrees of freedom.

The standard model

The standard model is a Yang-Mills field theory
with the symmetry U(1)× SU(2)× SU(3). It con-
sists of the electroweak sector2, U(1)×SU(2)L; the
strong sector, SU(3), called quantum chromody-
namics (QCD); and the Higgs sector.

The QCD sector

The QCD Lagrangian is an ordinary Yang-Mills La-
grangian with SU(3) symmetry,

LQCD =
∑
q

q̄ (iγaDa −mq) q + LYM (16)

2the subscript L means that only left bispinors take part
in the interaction.

where

Da = ∂a + igsI
jAja , (17)

LYM = −1

4
F jabF

ab
j , (18)

F jab = ∂aAb − ∂bAa − gsf jklA
k
aA

l
b , (19)

where q ∈ {u, d, s, c, t, b} is the quark field of spe-
cific flavour (Lorentz bispinor and color triplet); Ij

are the generators of the SU(3) group, usually rep-
resented as 1

2λ
j where λj are Gell-Mann matrices;

fjkl are the structure constants of the SU(3) group;
and gs is the QCD coupling constant.

Electroweak sector

The electroweak sector is a ”weakly mixed” U(1)×
SU(2)L,

LEW =
∑
ψ

ψ̄γa
(
i∂a − g′

YW
2
Ba − g ~TL ~Wa

)
ψ

+LYM(Ba) + LYM( ~Wa), (20)

where Ba is the U(1) gauge field; ~Wa is the three-
component SU(2) gauge field; g′ and g are coupling
constants; YW is the weak hyper-charge – the gen-
erator of the U(1) group; ~T = 1

2~τ (where ~τ are the
Pauli matrices in the weak isospin SU(2) space)
are the infinitesimal generators of the SU(2) group,
subscript L indicates that they only act on the left
fermions ψL, which are weak doublets while the
right fermions ψR are weak singlets. For example,
for the leptons of the first generation,

ψL =

(
νL
eL

)
, ψR = eR . (21)

The second singlet, the right neutrino, if exists, is
“sterile” (if massless) as it does not interact at all.
For the quarks of the first generation,

ψL =

(
uL
dL

)
, ψR = uR, dR . (22)

The weak hypercharge YW is defined such that the
electric charge Q is equal

Q = (TL)3 +
1

2
YW . (23)

The gauge field that interacts with the third com-
ponent of the weak isospin τ3 but does not interact
with the electric charge Q is called Z-boson,

Za =
gW

(3)
a − g′Ba√
g2 + g′2

. (24)
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The orthogonal combination, which interacts with
Q but not with τ3, becomes the electromagnetic
field Aa,

Aa =
g′W

(3)
a + gBa√
g2 + g′2

. (25)

Introducing the weak mixing angle3, tan θW = g′/g,
the transformation can be conveniently written as
an orthogonal transformation,(

A
Z

)
=

(
cos θW sin θW
− sin θW cos θW

)(
B
W 3

)
, (26)

which apparently preserves the ”kinetic energy”
terms in the Lagrangian.

With the notations e = g sin θW , W± =
1√
2

(
W 1 ∓ iW 2

)
, T± = 1

2 (τ1 ± iτ2) the fermionic

part of the Lagrangian takes the standard form,

L(F)
EW =

∑
ψ

ψ̄γai∂aψ − e
∑
ψ

ψ̄γaQψAa

− g

cos θW

∑
ψ

ψ̄γa
(

1

2
τ3L −Q sin2 θW

)
ψZa

− g

2
√

2

∑
ψ

ψ̄γa
(
T+
LW

+ + T−LW
−)ψ . (27)

Higgs sector

The Higgs field must provide masses to three gauge
fields – hence, together with the Higgs boson, there
should be minimum 4 components in the Higgs
field. In the standard model it is a complex spinor
of the group SU(2)L,

ϕ =
1√
2

(
ϕ+

ϕ0

)
, (28)

where the indexes + and 0 indicate the Q-charges
of the components; the YW -charge of both compo-
nents is equal 1.

The Higgs sector Lagrangian is

LH = ϕ†
(
←
∂a −ig′

1

2
YWBa − ig

1

2
~τ ~Wa

)
·

·
(
→
∂ a +ig′

1

2
YWBa + ig

1

2
~τ ~Wa

)
ϕ

−λ
2

4

(
ϕ†ϕ− v2

)2
(29)

After the spontaneous symmetry breaking the
fields Z and W± get masses, m2

w = 1
4v

2g2,
m2
Z cos2 θw = m2

w, while the field A remains mass-
less.

3also called Weinberg angle.


