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Introduction

In the context of particle physics, Quantum Field
Theory is a theory of elementary particles and their
interactions. The Standard Model of elementary
particles is a quantum field theory.

By definition, elementary particles are the most
fundamental — structureless — particles (like elec-
trons and photons) which exist in our universe. Ele-
mentary particles exhibit wave-particle duality: on
the one hand they diffract and interfere as waves
(or fields), on the other hand they appear and dis-
appear as whole entities (called quanta). Hence the
name of the theory.

A quantum field theory seeks to explain certain
fundamental experimental observations — like the
existence of antiparticles; the spin-statistics rela-
tion; the CPT symmetry — as well as to predict
the results of any given experiment, like the cross-
section for the Compton scattering, or the value of
the anomalous magnetic moment of the electron.

There are two popular approaches to deal with
quantum fields. One is the path integral formula-
tion, where elementary particles have the property
of being able to propagate simultaneously along all
possible trajectories with certain amplitudes. In
the other approach — called canonical quantization
— elementary particles are field quanta: necessarily
chunked ripples in the field.

In the end, the two formulations proved to be
equivalent.

We shall pursue the second approach here and
build the quantum field theory in the canonical
way: as a classical Lagrangian field theory with the
subsequent canonical quantization1.

Fundamental principles

Quantum field theory is built on several fundamen-
tal principles. A “principle” is a physical law of
more general — typically universal — applicability
usually formulated as a simple and succinct state-
ment.

Principle of relativity
The principle of relativity is the requirement
that the laws of physics have the same form in
all admissible frames of reference.

In the absence of gravitation one can choose
to admit only inertial frames of reference. The
laws of physics take particularly simple form
in inertial frames.

Principle of locality
The principle of locality states that an object

1sometimes historically called “second quantization”.

can only be influenced by its immediate sur-
roundings.

From this principle follows the finite speed of
information transmission.

Principle of covariance
The principle of covariance emphasizes formu-
lation of physical laws using only those phys-
ical quantities the measurements of which the
observers in different frames of reference could
unambiguously correlate.

Mathematically speaking, the physical quanti-
ties must transform covariantly, that is, un-
der a certain representation of the group of
coordinate transformations between admissi-
ble frames of reference of the physical theory.
This group of coordinate transformations is re-
ferred to as the covariance group of the theory.

The principle of covariance does not require
invariance of physical laws under the group of
admissible transformations although in most
cases the equations are actually invariant.
Only in the theory of weak interactions the
equations are not invariant under reflections
(but are, of course, still covariant).

In canonical quantum field theory the admissible
frames of reference are the inertial frames of special
relativity. The transformations between frames are
the velocity boosts, rotations, translations, and re-
flections. Altogether they form the Poincaré group
of coordinate transformations. Boosts and rota-
tions together make up the Lorentz group.

The covariant quantities are four-scalars, four-
vectors etc. of the Minkowski space of special
relativity (and also more complicated objects like
bispinors and others which we shall discuss later).

Covariant vectors of special relativity

Four-coordinates

An event in an inertial frame can be specified with
four coordinates {t, r}, where t is the time of the
event, and r ≡ {x, y, z} are the three Euclidean
spatial coordinates.

The coordinates of the same event in different in-
ertial frames are connected by a linear transforma-
tion from the Poincaré group. Rotations, transla-
tions and reflections do not couple time and spatial
coordinates, but velocity boosts do. Therefore in
special relativity time and spatial coordinates are
inseparable components of one and the same ob-
ject. It is only in the non-relativistic limit that
time separates from space.
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The Lorentz transformation of coordinates under
a velocity boost v along the x-axis is given as
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where primes denote coordinates in the boosted
frame, γ ≡ (1 − v2/c2)−1/2, and c is the speed of
light in vacuum2.

The four-coordinates {t, r} are customarily de-
noted as xa, where a = 0, 1, 2, 3, such that

x0 = t, x1 = x, x2 = y, x3 = z . (2)

The Lorentz transformation (1) can then be conve-
niently written as3

x′a = Λa
bxb . (3)

where Λa
b is the 4×4 transformation matrix in equa-

tion (1).

Invariant

A direct calculation shows that velocity boosts to-
gether with rotations, translations, and reflections
— that is, all Lorentz transformations — conserve
the following form,

s2 = t2 − r2 , (4)

which is then called the invariant interval.
In its infinitesimal incarnation,

ds2 = dt2 − dr2 , (5)

the form determines the geometry of time-space
and is called metric. The space with metric (5)
is called Minkowski space.

Dual coordinates

The invariant (4) can be conveniently written as

t2 − r2 ≡ xaxa , (6)

where xa are often called dual coordinates and are
defined as

xa ≡ {t,−r} = gabx
b , (7)

where the diagonal tensor gab with the main di-
agonal {1,−1,−1,−1} is the metric tensor of the
Minkowski space of special relativity.

2in the following the notation with ~ = c = 1 shall be
mostly used.

3note the “implicit summation” notation,
Λa

b xb ≡
P3

b=0 Λa
b xb.

Under Lorentz transformations the dual coordi-
nates apparently transform with the Lorentz matrix
where v is substituted by −v, which is actually the
inverse Lorentz matrix (prove it),

x′a = (Λ−1)b
axb , (8)

Four-gradient

The partial derivatives of a scalar with respect to
four-coordinates,
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apparently transform like dual coordinates, that is,
via the inverse Lorentz matrix,

∂
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Covariant vectors and tensors

A contra-variant four-vector is a set of four objects,
Aa = {A0,A}, which transform from one inertial
frame to another in the same way as coordinates
in (3),

A′a = Λa
bAb . (11)

A co-variant four-vector is a set of four objects, Aa,
which transform from one inertial frame to another
in the same way as partial derivatives in (10),

A′
a = (Λ−1)b

aAb . (12)

A covariant tensor F ab is a set of 4×4 objects
which transform between inertial frames as a prod-
uct of two 4-vectors,

F ′ab = Λa
cΛb

dF
cd . (13)

There exist other covariant objects in special rel-
ativity, like bispinors, which cannot be built out of
4-vectors. They will be discussed later.


