
1 ex-v : December 2, 2014

Exercises

1. Consider two interacting fields, a complex
spin- 1

2 field ψ and a real scalar field φ with
interacting Lagrangian Lv = −gψ̄ψφ. Find
the Euler-Lagrange equations and the Hamil-
tonian density T 0

0 of the system.

2. For a real scalar field L = 1
2∂aφ∂

aφ − 1
2m

2φ2

show that commutation relations [ak, a
†
k] = 1

for the generation/annihilation operators lead
to the commutation relation [χ, π] = i for the
canonical generalized coordinate χ and the cor-
responding generalized momentum π. Hints:

(a) The generalized coordinates of a field are
the values of the field itself, χ = φ. Ac-
cording to the general rule the generalized
momentum is π = ∂L

∂χ̇ . Find the expres-
sion for π. (Answer: π = ∂0φ).

(b) Consider the amplitude of a single plane
wave as the generalized coordinate (now
a quantum-mechanical operator)

χ = φk =
1√
2ω~k

(
a~ke

−ikx + a†~k
e+ikx

)
and calculate the corresponding operator
π.

(c) Calculate the commutator [χ, π].

3. Time evolution in Heisenberg-Born-Jordan
matrix mechanics: show that the canonical
Hamilton equations of motion1
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correspond to operator equations
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with the commutation relation [q, p] = i

Hint: show (by induction) that
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for all functions f and g that can be repre-
sented as a series of powers of q and p.
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is the classical Poison bracket.


