Exercises

1. Consider two interacting fields, a complex spin- $\frac{1}{2}$ field ψ and a real scalar field ϕ with interacting Lagrangian $\mathcal{L}_{v}=-g \bar{\psi} \psi \phi$. Find the Euler-Lagrange equations and the Hamiltonian density T_{0}^{0} of the system.
2. For a real scalar field $\mathcal{L}=\frac{1}{2} \partial_{a} \phi \partial^{a} \phi-\frac{1}{2} m^{2} \phi^{2}$ show that commutation relations $\left[a_{k}, a_{k}^{\dagger}\right]=1$ for the generation/annihilation operators lead to the commutation relation $[\chi, \pi]=i$ for the canonical generalized coordinate χ and the corresponding generalized momentum π. Hints:
(a) The generalized coordinates of a field are the values of the field itself, $\chi=\phi$. According to the general rule the generalized momentum is $\pi=\frac{\partial \mathcal{L}}{\partial \dot{\chi}}$. Find the expression for π. (Answer: $\pi=\partial_{0} \phi$).
(b) Consider the amplitude of a single plane wave as the generalized coordinate (now a quantum-mechanical operator)

$$
\chi=\phi_{k}=\frac{1}{\sqrt{2 \omega_{\vec{k}}}}\left(a_{\vec{k}} e^{-i k x}+a_{\vec{k}}^{\dagger} e^{+i k x}\right)
$$

and calculate the corresponding operator π.
(c) Calculate the commutator $[\chi, \pi]$.
3. Time evolution in Heisenberg-Born-Jordan matrix mechanics: show that the canonical Hamilton equations of motion ${ }^{1}$

$$
\frac{\partial p}{\partial t}=-\frac{\partial H}{\partial q}, \frac{\partial q}{\partial t}=\frac{\partial H}{\partial p}, \frac{\partial f(q, p)}{\partial t}=\{f, H\}
$$

correspond to operator equations
$\frac{\partial p}{\partial t}=\frac{1}{i}[p, H], \frac{\partial q}{\partial t}=\frac{1}{i}[q, H], \frac{\partial f}{\partial t}=\frac{1}{i}[f, H]$.
with the commutation relation $[q, p]=i$
Hint: show (by induction) that

$$
\frac{1}{i}[q, f]=\frac{\partial f}{\partial p}, \frac{1}{i}[p, f]=-\frac{\partial f}{\partial q}
$$

and

$$
\frac{1}{i}[h, f]=\frac{\partial h}{\partial q} \frac{\partial f}{\partial p}-\frac{\partial f}{\partial q} \frac{\partial h}{\partial p}
$$

for all functions f and g that can be represented as a series of powers of q and p.

$$
{ }^{1} \text { where }\{f, H\} \equiv \frac{\partial f}{\partial q} \frac{\partial H}{\partial p}-\frac{\partial f}{\partial p} \frac{\partial H}{\partial q}
$$

is the classical Poison bracket.

