1 ex-v : December 2, 2014

Exercises

1. Consider two interacting fields, a complex
spin—% field ¢ and a real scalar field ¢ with
interacting Lagrangian £, = —gyi¢. Find
the Euler-Lagrange equations and the Hamil-

tonian density 79 of the system.

2. For a real scalar field £ = %6a¢8“¢ — %m2¢2

show that commutation relations [ak,a};} =1
for the generation/annihilation operators lead
to the commutation relation [y, ] = ¢ for the
canonical generalized coordinate y and the cor-
responding generalized momentum 7. Hints:

(a) The generalized coordinates of a field are
the values of the field itself, x = ¢. Ac-
cording to the general rule the generalized
momentum is ™ = %' Find the expres-

sion for 7. (Answer: m = Jy¢).
(b) Consider the amplitude of a single plane

wave as the generalized coordinate (now
a quantum-mechanical operator)
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and calculate the corresponding operator
.

(c) Calculate the commutator [x, 7).

3. Time evolution in Heisenberg-Born-Jordan
matrix mechanics: show that the canonical
Hamilton equations of motion®
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with the commutation relation [q, p] = ¢
Hint: show (by induction) that
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for all functions f and g that can be repre-
sented as a series of powers of ¢ and p.
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is the classical Poison bracket.



