Exercises

(Extra) One-boson exchange potential

Calculate the non-relativistic one boson exchange potential corresponding to the diagram

for interaction Lagrangian

$$
\begin{equation*}
\mathcal{L}_{v}=-g \bar{\psi} \gamma_{5} \psi \phi \tag{2}
\end{equation*}
$$

which describes interaction of fermions with pseudo-scalar bosons.

Hints:
The matrix element ${ }^{1} M$ is given as

$$
\begin{equation*}
M=i^{2} g^{2} \bar{u}\left(p_{1}^{\prime}\right) \gamma_{5} u\left(p_{1}\right) \frac{1}{k^{2}-\mu^{2}} \bar{u}\left(p_{2}^{\prime}\right) \gamma_{5} u\left(p_{2}\right) \tag{3}
\end{equation*}
$$

The Dirac bispinor $u_{\mathbf{p}}$ is

$$
\begin{equation*}
u_{\mathbf{p}}=\binom{\phi_{\mathbf{p}}}{\frac{\vec{\sigma} \mathbf{p}}{E_{\mathbf{p}}+m} \phi_{\mathbf{p}}} \tag{4}
\end{equation*}
$$

which gives

$$
\begin{align*}
\bar{u}\left(p_{1}^{\prime}\right) \gamma_{5} u\left(p_{1}\right)= & i \phi_{\mathbf{p}_{1}^{\prime}}^{\dagger} \frac{\vec{\sigma} \mathbf{p}_{1}}{E_{\mathbf{p}_{1}}+m} \phi_{\mathbf{p}_{1}} \tag{5}\\
& -i \phi_{\mathbf{p}_{1}^{\prime}}^{\dagger} \frac{\vec{\sigma} \mathbf{p}_{1}^{\prime}}{E_{\mathbf{p}_{1}^{\prime}}+m} \phi_{\mathbf{p}_{1}} \tag{6}
\end{align*}
$$

In the non-relativistic limit $E \approx m$ up to the terms v^{2}

$$
\begin{equation*}
\bar{u}\left(p_{1}^{\prime}\right) \gamma_{5} u\left(p_{1}\right) \approx \frac{i}{2 m} \phi_{\mathbf{p}_{1}^{\prime}}^{\dagger} \vec{\sigma}_{1}\left(\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}\right) \phi_{\mathbf{p}_{1}} \tag{7}
\end{equation*}
$$

Now introducing $\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}=-\mathbf{q}$ gives

$$
\begin{align*}
\bar{u}\left(p_{1}^{\prime}\right) \gamma_{5} u\left(p_{1}\right) & \approx-\frac{i}{2 m} \phi_{\mathbf{p}_{1}^{\prime}}^{\dagger} \vec{\sigma}_{1} \mathbf{q} \phi_{\mathbf{p}_{1}} \tag{8}\\
\bar{u}\left(p_{2}^{\prime}\right) \gamma_{5} u\left(p_{2}\right) & \approx \frac{i}{2 m} \phi_{\mathbf{p}_{1}^{\prime}}^{\dagger} \vec{\sigma}_{2} \mathbf{q} \phi_{\mathbf{p}_{1}} \tag{9}
\end{align*}
$$

In the c.m. frame

$$
\begin{equation*}
k^{2}-\mu^{2}=-\left(\mathbf{q}^{2}+\mu^{2}\right) \tag{10}
\end{equation*}
$$

and finally

$$
\begin{equation*}
M=\frac{g^{2}}{(2 m)^{2}} \phi_{1}^{\dagger} \phi_{2}^{\dagger} \frac{\left(\vec{\sigma}_{1} \vec{q}\right)\left(\vec{\sigma}_{2} \vec{q}\right)}{\vec{q}^{2}+\mu^{2}} \phi_{1} \phi_{2} \tag{11}
\end{equation*}
$$

[^0]where P_{i} and P_{f} are the sums of all particle momenta in the correspindingly initial and final states.

The one-pseudo-scalar-boson-exchange-potential is the given as

$$
\begin{equation*}
V_{\mathrm{PS}}(\mathbf{r})=-\frac{g^{2}}{2 m^{2}} \sigma_{1 a} \sigma_{2 b} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{q_{a} q_{b}}{\mathbf{q}^{2}+\mu^{2}} e^{i \mathbf{q} \mathbf{r}} \tag{12}
\end{equation*}
$$

The integral

$$
\begin{array}{r}
\int \frac{d^{3} q}{(2 \pi)^{3}} \frac{q_{a} q_{b}}{\mathbf{q}^{2}+\mu^{2}} e^{i \mathbf{q r}}= \\
-\frac{\partial}{\partial r_{a}} \frac{\partial}{\partial r_{b}} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{1}{\mathbf{q}^{2}+\mu^{2}} e^{i \mathbf{q r}}= \\
-\frac{\partial}{\partial r_{a}} \frac{\partial}{\partial r_{b}} \frac{1}{4 \pi} \frac{e^{-\mu r}}{r}= \\
\frac{\mu^{2}}{4 \pi} \frac{e^{-\mu r}}{r}\left(\frac{1}{\mu r}+\frac{1}{(\mu r)^{2}}\right) \delta_{a b} \\
-\frac{\mu^{2}}{4 \pi} \frac{e^{-\mu r}}{r}\left(1+\frac{3}{\mu r}+\frac{3}{(\mu r)^{2}}\right) \frac{r_{a} r_{b}}{r^{2}} \tag{17}
\end{array}
$$

The OBEP with pseudo-scalar boson is thus a finite-range spin-spin and tensor potential of Yukawa type with the range equal to inverse mass of the exchange boson.
The OBEP with a vector boson has a slightly different spin structure which in addition includes central and spin-orbit forces. The central force has the Yukawa form $e^{-\mu r} / r$. In the limit of massless vector boson this gives the Coulomb central potential.

[^0]: ${ }^{1}$ defined through

 $$
 \langle f| S|i\rangle=-i(2 \pi)^{4} \delta\left(P_{f}-P_{i}\right) M
 $$

