Exercises

1. Prove that generators of a Lie group have a Lie algebra

$$[I_l, I_m] \doteq I_l I_m - I_m I_l = i C_{lm}^k I_k ,$$

where C_{lm}^k are certain numbers (called structure constants).

Hints:

Consider the equation

$$g(\beta') = g(\alpha)g(\beta)g^{-1}(\alpha)$$

in the limit $\beta \to 0$ and $\alpha \to 0$ and argue that

$$\lim_{\beta \to 0} \beta'_k = f_{kl}(\alpha)\beta_l \; ,$$

where $f_{kl}(\alpha)$ are some functions.

Argue that

$$\lim_{\alpha \to 0} f_{kl}(\alpha) = \delta_{kl} + \sum_{m} C_{lm}^k \alpha_m$$

where C_{lm}^k are some constants.

Now consider the infinitesimal form of the equation.

- 2. Argue that a representation of a Lie group is also a Lie group with the same Lie algebra, as the original group.
- 3. Show that if the operators

$$U = \exp\left(-i\sum_{k}J_k\alpha_k\right)$$

,

are unitary, $U^{\dagger}U = 1$, and the parameters α_k are real, then the generators J_k are hermitian: $J_k^{\dagger} = J_k$. Show that if $\det(U) = 1$ then trace $(J_k) = 0$.

Hints:

- consider only infinitesimal operators; - show that $det(e^A) = e^{trace(A)}$ by diagonalizing matrix A.

4. Using the Lie algebra of the rotation group¹

$$[I_j, I_k] = i \sum_l \epsilon_{jkl} I_l$$

find the 2x2 representation of the rotation generators \vec{I} (assuming I_3 is diagonal and I_1 is real).

Hints: recall that $\operatorname{trace}(I_k) = 0$ and $I_k^+ = I_k$; *I*'s must be half the Pauli's σ -matrices.

 $^{{}^{1}\}epsilon_{jkl}$ is the Levi-Civita (absolutely antisymmetric) symbol.