Exercises

1. Show that the generator $I_{\vec{n}}$ for the rotation around axis \vec{n} is given as $I_{\vec{n}}=\vec{I} \cdot \vec{n}$ (note the vector dot product, not a matrix acting on a vector).
Hint: Show that rotation around \vec{n} has to leave \vec{n} unchanged, and therefore $I_{\vec{n}} \vec{n}=0$ (here is a matrix acting on a vector). Prove the last equation by direct calculation.
2. Find the finite rotation matrix for a 2×2 representation of the rotation group.
Hint: $\vec{I}=\frac{1}{2} \vec{\sigma}$, and $(\vec{\sigma} \cdot \vec{n})^{2}=1$, where $\vec{\sigma}$ are Pauli matrices.
3. Find the additive parameter φ of the velocity boost matrix (along the x-axis) and the corresponding generator.
Hint: $v=\tanh \varphi$.
4. Using the additive parameter $\varphi=\frac{1}{2} \ln \frac{1+v}{1-v}$ find the velocity-boost matrices for the $\left(\frac{1}{2}, 0\right)$ and ($0, \frac{1}{2}$) representations of the Lorentz group.
