Exercises

1. Calculate the current and the momentum of the positive- and negative-frequency solutions of the Dirac equation.
2. Find the projection operators $\mathcal{P}_{ \pm}$on the positive and negative frequency solutions of the Dirac equation.
3. The spinors $\phi \in\left(\frac{1}{2}, 0\right)$ and $\chi \in\left(0, \frac{1}{2}\right)$ are often called "left" and "right". Explain why.
Hint: investigate the behavior of the projection of the spin on the momentum, $\phi^{\dagger} \frac{1}{2} \vec{\sigma} \vec{p} \phi$, as function of the velocity with which the spinor moves relative to the observer.
What happens if the spinor has zero-mass and is thus doomed to forever move with the speed of light?
4. Show that $\frac{d^{3} p}{2 E_{\vec{p}}}$ is invariant.

Hint: consider $d^{4} p \delta\left(p^{2}-m^{2}\right)$.

