Exercises: spin- $\frac{1}{2}$

1. Show that after a rotation by 2π a spinor changes sign.
Hint: a 'spinor' is an object which under rotations of coordinates is transformed by a $j=\frac{1}{2}$ representation of the rotation group.
2. An adjoint representation of a group $\{g(\alpha)\}$ with infinitesimal element

$$
g(d \alpha)=1+i \sum_{k=i}^{n} I_{k} d \alpha_{k}
$$

and Lie algebra

$$
I_{k} I_{m}-I_{m} I_{k}=i \sum_{l} C_{k m}^{l} I_{l}
$$

is the matrix representation $\{G(\alpha)\}$ (where group elements G are $n \times n$ matrices) where one considers transformations of the group elements in the form ${ }^{1}$

$$
g \rightarrow g^{\prime}=g(\alpha)^{-1} g g(\alpha)
$$

Specifically, matrices G transform the group generators,

$$
I_{k} \rightarrow g(\alpha)^{-1} I_{k} g(\alpha)=\sum_{l} G_{k l}(\alpha) I_{l}
$$

Consider an infinitesimal transformation and show that the generators \mathcal{I}_{k} of the adjoint representation,

$$
G_{k l}(\alpha)=\delta_{k l}+i \sum_{m}\left(\mathcal{I}_{m}\right)_{k l} \alpha_{m}
$$

are matrices with the matrix elements

$$
\left(\mathcal{I}_{k}\right)_{l m}=i C_{l k}{ }^{m}=-i C_{k l}{ }^{m} .
$$

3. Let ϕ be a spinor which transforms under $\left(\frac{1}{2}, 0\right)$ representation of the Lorentz group. Argue that the object $\left\{\phi^{\dagger} \phi, \phi^{\dagger} \vec{\sigma} \phi\right\}$ transforms as four-vector under Lorentz transformation.
Hints:

- For simplicity consider only infinitesimal transformations;
- First consider the transformation of the object under rotations: argue (form the previous exercise or from equations (10)(11) in note 4), that for ordinary threevectors

$$
\left(I_{k}\right)_{l m}=-i \epsilon_{k l m}
$$

[^0]- Consider velocity boost in the \vec{n} (or, for simplicity, in the x)-direction.

4. Show that the Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left(\bar{\psi} \gamma^{a} \partial_{a} \psi+\partial_{a} \bar{\psi} \gamma^{a} \psi\right)-m \bar{\psi} \psi
$$

does not lead to a good Euler-Lagrange equation.
5. Show by direct calculation that the current $\bar{\psi} \gamma^{a} \psi$ conserves if ψ is a solution of the Dirac equation.
6. Calculate the energy-momentum tensor for the spin- $\frac{1}{2}$ field.
7. Show that if bispinor ψ is a solution to the Dirac equation, then its components satisfy the Klein-Gordon equation.
Hint: multiply the Dirac equation by $\left(i \gamma^{b} \partial_{b}+\right.$ m) from the left.
8. Argue that the 2×2 representation of the Lie algebra of the rotation group is the group of Special Unitary 2×2 matrices (called $S U(2)$). In other words, argue that $S U(2)$ group has the same Lie algebra, as the rotation group $S O(3)$.

[^0]: ${ }^{1}$ adjoint representation is actually dual: one can consider both $g(\alpha)^{-1} g g(\alpha)$ and $g(\alpha) g g(\alpha)^{-1}$.

