note9 : October 13, 2010

Interacting quantum fields
Interaction Lagrangian

If two fields, say v and ¢, interact, the total La-
grangian £ for the combined system is equal the
sum of the free Lagrangians, £, and Lg, plus some
interaction Lagrangian L,,

L=Ly+Ly+L,. (1)

The interaction Lagrangian £, contains both fields
1 and ¢. For example, the interaction between a
bispinor field ¥ and a real scalar field ¢ can be

L,= —91L¢¢ )

where g is the coupling constant.

The dimension of the coupling constant is of im-
portance for the perturbation theory. The the-
ory works best (can be renormalized) only if the
coupling constant is dimensionless. In the units
h = ¢ = 1 all dimensions are expressed in terms
of mass m,

(2)

S~FEt~1, (3)
t~x~mT (4)
L~m*, (5)
b, 6)
¥ ~m*? (7)

where S is action, ¢ is spin-0 field, and % is spin-
1/2 field. The coupling constant in the interaction
Lagrangian (2) is dimensionless.

The Hamiltonian for the system of interacting
fields will be a sum of Hamiltonians of the free
fields, Hyp, and some interacting potential V,

H=Hy+V. (8)

In the following we shall use interaction La-
grangians containing fields but not the field deriva-
tives. For such Lagrangians

V:f/dgzﬁu.

Time development in quantum mechanics

(9)

In quantum mechanics we postulate that the time
evolution of a matrix operator O (let’s assume —
not explicitely depending on time, for simplicity)
follows the Hamilton equation

00 1

a, > Oa H )

ot i | ]
where 1[0, H] = 1(OH — HO) is the (generalized)
Poisson bracket for matrices and H is the Hamilto-
nian of the system.

(10)

Considering the elements of O as matrix elements
of some operator O, (®,|0|®,), the time depen-
dence in (10) can be attributed to the operator O,
the state vectors (®p| and |®,), or to both. Hence
we can have the following “pictures” for the time-
developement of a quantum system with the Hamil-
tonian H = Hy+ V,

1. Heisenberg picture

®
2 z'@z[O,H]

2. Schrodinger picture

0P .00
’LE—H(I), 1570 (12)
3. Interaction picture
0P .00
ZE =V 5 ZE = [O,Ho] . (13)

We shall use the interaction picture where the
quantum state of a system is time-independent for
free fields. A weak interaction would lead to slow
transitions between the states of free fields (normal
modes).

S-matrix

Let us try to formally integrate the time evolution
equation i%—f = V' ® using small time step At:

D(tg + At) = (1 — iV (to)At)D . (14)
After N time steps
(I)(to + NAﬁ) = (1 — iV(tN_l)At) .
(1 =iV (tn—2)At)... (1 =iV (tg)At) D(to) . (15)

Note that the later time V’s come at the left.
We cannot exchange the order of V’s since they
contain generation/annihilation operators which do
not commute. The later sum can be rewritten as

B(tg + Ndt) = (1 + % > V()AL +

(7?2 D T(V(E)V () A8 + ...)CID(tO), (16)

3

where the time ordering operator T arranges the
V’s according to their times, the older V'’s to the
left,

, if t1 > to
, if ) < tg
(17)

T(V(t)V (t2)) = { 1‘;83%3
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In the limit t¢ - —o0o0, N — oo the time evolution
will be

P(+o0) = (i (=0 X

n!
n=0

x /T(V(tl) LV (t))dt .dtn)tl)(—oo) (18)

S-matrix is the operator that performs time evolu-

tion of the state-vector from ¢t = —oo to ¢ = +o0,
O (+00) = SP(—00) . (19)
From (18)
(e —’L)n
s = > ( " /T(V(tl) V() dty . dty,

n=0

= Texp

T exp <z /_ :O V(t)dt) (20)
<i/d4xﬁv> (21)

(22)

The probability Pf.; of a transition from the initial
state |i) to the final state |f) is given by

Prei = [(fISI0)* =[S (23)

Exercises

1. Consider two ”classical” interacting fields, a
complex spin-1/2 field ¢ and a real scalar field
¢ with interacting Lagrangian £, = —gin)e.
Find the Euler-Lagrange equations and the
Hamiltonian density 77 of the system.

2. Show that (for a real scalar field £ =
19,00"¢ — im?¢*) commutation relations
[ak,az] = 1 for the generation/annihilation
operators lead to the commutation relation
[x,7] = i for a canonical generalized coordi-
nate x and the corresponding momentum 7.

Hints:

(a) For a field the generalized coordinates are
the values of the field itself, x = ¢. Ac-
cording to the general rule the generalized
momentum is ™ = %. Find the expres-

sion for 7 (answer: m = Jy¢).
(b) Consider the amplitude of a single plane

wave as the generalized (now operator)
coordinate

1
X=¢r = —ng

and calculate the corresponding operator
.

_,—ikx T 4ikx
(ake —l—aEe )

(c) Calculate the commutator [x,7].

3. Time evolution in Heisenberg-Born-Jordan
matrix mechanics: show that the canonical
(Hamilton) equations of motion

dp OH 0q O0H O0f(q,p
. a9 ar . 4o > ( ):{faH}v
ot Oq ~ Ot Op ot
(where
of 0H O0f0H
(rmy=L22 SLCR
dq dp  9p Iq
is the classical Poison bracket) with the com-
mutation relation [¢,p] = 4 lead to operator
equations
1 1 1
o _ o4 1, . 0Of

at*;[pv ]aa:;[q, LEZ;U,H]-

Hint: show (by induction) that

1 _of
1 _of

for any function which can be represented as a
series of powers of ¢ and p.



