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Massive spin-1 field

The lowest-dimension representation of the full
Lorentz group, containing spin-1, is (1

2
, 1

2
). The

matrices of this representations transform four-
vectors ϕa = {ϕ0, ~ϕ}.
However, a four-vector also contains a rotation

scalar, ϕ0, that is a spin-0 part. This redundant
component has to be excluded by imposing some
additional condition, for example, the (covariant)
Lorenz condition1,

∂aϕ
a = 0 . (1)

For a plane wave ϕa = ǫae−ipx, where ǫa is a four-
vector and pap

a = m2, the Lorenz condition gives
ǫp = 0. In the rest frame (p = 0) the latter leads to
ǫ0 = 0 indicating that only three components of the
vector ~ǫ are independent, which is consistent with
the concept of a spin-1 field.

Lagrangian

A suitable Lagrangian (that is, real bilinear form of
fields and field derivatives) is

L = −∂aϕ
∗
b∂

aϕb +m2ϕ∗
bϕ

b . (2)

This Lagrangian is simply a sum of Klein-Gordon
Lagrangians for each field component φb. There-
fore most of the results from the scalar fields im-
mediately apply for spin-1 fields. In particular, the
spin-1 field must be a bosonic field with bosonic
annihilation/generation operators.

Euler-Lagrange equation

The general form of the Euler-Lagrange equation,

∂a
∂L

∂(∂aϕ∗
b)

=
∂L

∂(ϕ∗
b )

, (3)

leads to the Klein-Gordon equation for every com-
ponent ϕb,

(

∂a∂
a +m2

)

ϕb = 0 . (4)

Normal modes

ϕ =
∑

kλ

1√
2ωk

(

akλǫλe
−ikx + b+

kλ
ǫ∗λe

+ikx
)

, (5)

where the spin functions ǫλ are chosen in the rest
frame (where (ǫλ)

0 = 0) as eigenfunction of the
I3 generator, I3ǫλ = λǫλ, λ = 1, 0,−1. They are
normalized as ǫ†λǫλ′ = δλλ′ .
The generation/annihilation operators a and b

satisfy bosonic commutation relations,

a
kλa

†
kλ − a

†
kλakλ = δkk′δλλ′ . (6)

1named after Danish physicist Ludvig Lorenz.

Electromagnetic field

Electromagnetic field is a real massless spin-1 field.
It is described by a real four-vector potential Aa.
The Lagrangian of the electromagnetic field in
Gaussian units is given as

L = − 1

8π
∂aA

b∂aAb . (7)

Equivalently, the Lagrangian can be written as

L = − 1

16π
F abFab; , (8)

where F ab is the electromagnetic tensor,

F ab = ∂aAb − ∂bAa . (9)

Gauge invariance

The absence of the mass term in the Lagrangian
leads to an important symmetry, called gauge sym-

metry: the Lagrangian is invariant under the so-
called gauge transformation,

Aa → Aa + ∂aφ , (10)

where φ is an arbitrary scalar function of coordi-
nates. Indeed the electromagnetic tensor (9) and
therefore the Lagrangian (8) are apparently invari-
ant under the gauge transformation (10).
The Lorenz condition limits the class of arbitrary

function to harmonic functions

∂a∂aφ = 0 . (11)

Normal modes

The Euler-Lagrange equation for the components
of the four-potential is the zero-mass Klein-Gordon
equation,

∂a∂aA
b = 0 . (12)

Let us look for the solutions in the form of a plane
wave,

A(k) =

√

2π

ω
e(k)e−ikx , (13)

where k = {ω,k}, ω = |k|, k2 = 0 (since photon
mass is zero), and e(k) is a four-vector.
From the Lorenz condition,

ke ≡ ωe0 − ~k~e = 0 , (14)

it follows that ~e 6= 0, that is the amplitude e(k) is
not time-like.

A gauge transformation with φ =
√

2π
ω
ife−ikx,

where f is a scalar, leads to a transformation of the
amplitude

ea → ea + fka . (15)
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The scalar f can always be chosen such that in a
certain frame

e = {0, e} , ke = 0; (16)

and

A0 = 0 , ∇A = 0 . (17)

The gauge (17) is usually referred to as Coulomb

gauge, transverse gauge, or radiation gauge. In this
gauge the electromagnetic field can be represented
as

A =
∑

kλ

√

2π

ωk

(

akλeλe
−ikx + a

†
kλe

∗
λe

ikx
)

, (18)

where λ = 1, 2 are the two orthogonal polarizations,

eλeλ′ = δλλ′ , ek = 0 . (19)

Since Aa is real, there are no “anti”-particle opera-
tors in the normal mode expansion (18) – real fields
have only one type of particles.

The generation/annihilation operators akλ, a
†
kλ

satisfy the bosonic commutation relations,

akλa
†
kλ − a

†
kλakλ = δkk′δλλ′ . (20)

Spin-statistics theorem

The spin-statistics theorem states that relativisti-
cally covariant canonical quantum field theory with
positive definite energy density predicts that fields
with integer spin are necessarily bosonic, and fields
with half-integer spin – necessarily fermionic.

Exercises

1. Show that the Lagrangians

L = − 1

8π
∂aA

b∂aAb

and

L = − 1

16π
F abFab

are equivalent under the Lorenz condition
∂aA

a = 0. Hint: the difference is a full deriva-
tive, which does not contribute to the variation
of the action.

2. Show that the Lagrangian

L = − 1

8π
∂aA

b∂aAb − jaAa

is gauge invariant if ja is a conserved current
(∂aj

a = 0).

3. Derive the Maxwell equation with sources from
the Lagrangian

L = − 1

8π
∂aA

b∂aAb − jaAa

4. Derive the expression q (E+ v ×H) for the
Lorentz force (the electromagnetic force acting
on a charged particle) from the action

S = −m

∫

ds− q

∫

dxaAa ,

where the integral is take along the trajectory
of the particle, ds2 = dt2 − dr2, m and q are
the mass and the charge of the particle, Aa

is the electromagnetic field at the point where
the particle is located.
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