Canonical quantization of spin- $\frac{1}{2}$ field

Euler-Lagrange equation, current, energy

The simplest covariant Lagrangian for a spin- $\frac{1}{2}$ field is (the real part of)

$$
\begin{equation*}
\mathcal{L}=i \bar{\psi} \gamma^{a} \partial_{a} \psi-m \bar{\psi} \psi \tag{1}
\end{equation*}
$$

The corresponding Euler-Lagrange equation is the Dirac equation,

$$
\begin{equation*}
\left(i \gamma^{a} \partial_{a}-m\right) \psi=0 \tag{2}
\end{equation*}
$$

The Noether's conserved current is

$$
\begin{equation*}
j^{a}=i\left(\bar{\psi} \frac{\partial \mathcal{L}}{\partial\left(\partial_{a} \bar{\psi}\right)}-\frac{\partial \mathcal{L}}{\partial\left(\partial_{a} \psi\right)} \psi\right)=\bar{\psi} \gamma^{a} \psi \tag{3}
\end{equation*}
$$

and the canonical energy density is

$$
\begin{equation*}
T_{0}^{0}=-i \bar{\psi} \vec{\gamma} \vec{\partial} \psi+m \bar{\psi} \psi \tag{4}
\end{equation*}
$$

Normal modes

Let us find the complete basis of solutions to the Dirac equation in the form of plane waves,

$$
\begin{equation*}
\psi(x)=\binom{\phi}{\chi} e^{-i p x} \equiv\binom{\phi}{\chi} e^{i \vec{p} \vec{r}-i E t} \tag{5}
\end{equation*}
$$

where $e^{-i p x} \equiv e^{i \vec{p} \vec{r}-i E t}$ and the spinors ϕ and χ are no longer functions of time and coordinates. Substituting the plane-wave ansatz (5) into the Dirac equation (2) gives (in the Dirac basis)

$$
\left[\begin{array}{cc}
E-m & -\vec{\sigma} \vec{p} \tag{6}\\
\vec{\sigma} \vec{p} & -(E+m)
\end{array}\right]\binom{\phi}{\chi}=0 .
$$

The homogeneous system of linear algebraic equations has a non-trivial solution only when the determinant of the matrix is zero - this gives ${ }^{1}$ the relativistic relation between E and \vec{p},

$$
\begin{equation*}
E^{2}=m^{2}+\vec{p}^{2} \tag{7}
\end{equation*}
$$

Again there are both positive- and negativefrequency solutions

$$
\begin{equation*}
u_{\vec{p}} e^{-i p x}, \text { and } v_{\vec{p}} e^{+i p x} \tag{8}
\end{equation*}
$$

where $p^{a}=\left\{E_{\vec{p}}, \vec{p}\right\}, \vec{p}$ is an arbitrary wave-vector, and $E_{\vec{p}}=+\sqrt{m^{2}+\vec{p}^{2}}$ is the positive square root.

From the Dirac equation, the positive- and negative-frequency bispinors $u_{\vec{p}}$ and $v_{\vec{p}}$ are

$$
\begin{equation*}
u_{\vec{p}}=\binom{\phi}{\frac{\vec{\sigma} \vec{p}}{E_{\vec{p}}+m} \phi}, \quad v_{\vec{p}}=\binom{\frac{\vec{\sigma} \vec{p}}{E_{\vec{p}}+m} \chi}{\chi} \tag{9}
\end{equation*}
$$

$$
{ }^{1}(\vec{\sigma} \vec{p})^{2}=\vec{p}^{2}
$$

where ϕ and χ are arbitrary spinors.
There are two linearly independent spinors, which can be chosen for the complete basis. For example, one can choose eigen-spinors of the $\frac{1}{2} \sigma_{3}$ operator in the frame where $\vec{p}=0$,

$$
\begin{equation*}
\frac{1}{2} \sigma_{3} \phi_{\lambda}=\lambda \phi_{\lambda} \tag{10}
\end{equation*}
$$

and similarly for the spinor χ.
Charge and normalization The charge density for the spin- $\frac{1}{2}$ field is

$$
\begin{equation*}
j^{0}=\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \psi \tag{11}
\end{equation*}
$$

The charge $Q=\int_{V=1} d^{3} x j^{0}$ of the normal modes is then given as

$$
\begin{align*}
& Q\left(u_{\vec{p} \lambda} e^{-i p x}\right)=u_{\vec{p} \lambda}^{\dagger} u_{\vec{p} \lambda}=\phi_{\lambda}^{\dagger} \phi_{\lambda} \frac{2 E_{\vec{p}}}{E_{\vec{p}}+m} \tag{12}\\
& Q\left(v_{\vec{p} \lambda} e^{+i p x}\right)=v_{\vec{p} \lambda}^{\dagger} v_{\vec{p} \lambda}=\chi_{\lambda}^{\dagger} \chi_{\lambda} \frac{2 E_{\vec{p}}}{E_{\vec{p}}+m} \tag{13}
\end{align*}
$$

Unlike the scalar field the spin- $\frac{1}{2}$ field seemingly gives positive charges for both positive- and negative-frequency solutions.

Unit charge condition for a plane-wave leads to the normalizations

$$
\begin{equation*}
u_{\lambda}^{\dagger} u_{\lambda^{\prime}}=v_{\lambda}^{\dagger} v_{\lambda^{\prime}}=\delta_{\lambda \lambda^{\prime}} \tag{14}
\end{equation*}
$$

which are obtained by choosing

$$
\begin{equation*}
\phi_{\lambda}^{\dagger} \phi_{\lambda^{\prime}}=\chi_{\lambda}^{\dagger} \chi_{\lambda^{\prime}}=\frac{E_{\vec{p}}+m}{2 E_{\vec{p}}} \delta_{\lambda \lambda^{\prime}} . \tag{15}
\end{equation*}
$$

With this normalization

$$
\begin{equation*}
\bar{u}_{\lambda} u_{\lambda^{\prime}}=-\bar{v}_{\lambda} v_{\lambda^{\prime}}=\frac{m}{E_{\vec{p}}} \delta_{\lambda \lambda^{\prime}} \tag{16}
\end{equation*}
$$

Energy From (4) follows that the positive-energy solution has positive energy,

$$
\begin{equation*}
E\left(u e^{-i p x}\right)=\bar{u} \vec{\gamma} \vec{p} u+m \bar{u} u=E_{\vec{p}} \tag{17}
\end{equation*}
$$

while the negative-energy solution seemingly has negative energy,

$$
\begin{equation*}
E\left(v e^{+i p x}\right)=\bar{v} \vec{\gamma}(-\vec{p}) v+m \bar{v} v=-E_{\vec{p}} \tag{18}
\end{equation*}
$$

Normal mode representation

An arbitrary solution to the Dirac equation can be represented as a linear combination of normal modes,

$$
\begin{equation*}
\psi=\sum_{\vec{p} \lambda}\left(a_{\vec{p} \lambda} u_{\vec{p} \lambda} e^{-i p x}+b_{\vec{p} \lambda}^{\dagger} v_{\vec{p} \lambda} e^{-i p x}\right) \tag{19}
\end{equation*}
$$

The charge of the field is then given as

$$
\begin{equation*}
Q=\sum_{\vec{p} \lambda}\left(a_{\vec{p} \lambda}^{\dagger} a_{\vec{p} \lambda}+b_{\vec{p} \lambda} b_{\vec{p} \lambda}^{\dagger}\right), \tag{20}
\end{equation*}
$$

and the Hamiltonian,

$$
\begin{equation*}
H=\sum_{\vec{p} \lambda} E_{\vec{p}}\left(a_{\vec{p} \lambda}^{\dagger} a_{\vec{p} \lambda}-b_{\vec{p} \lambda} b_{\vec{p} \lambda}^{\dagger}\right) . \tag{21}
\end{equation*}
$$

Generation/annihilation operators

The only way to make sense of the charge and Hamiltonian is to postulate anti-commutation relation for the spin $-\frac{1}{2}$ operators,

$$
\begin{align*}
& a_{\vec{p} \lambda} a_{\vec{p}^{\prime} \lambda^{\prime}}^{\dagger}+a_{\vec{p}^{\prime} \lambda^{\prime}}^{\dagger} a_{\vec{p} \lambda}=\delta_{\vec{p} \vec{p}} \delta_{\lambda \lambda^{\prime}}, \tag{22}\\
& b_{\vec{p} \lambda} b_{\vec{p}^{\prime} \lambda^{\prime}}^{\dagger}+b_{\vec{p}^{\prime} \lambda^{\prime}}^{\dagger} b_{\vec{p} \lambda}=\delta_{\vec{p} \vec{p}^{\prime}} \delta_{\lambda \lambda^{\prime}} . \tag{23}
\end{align*}
$$

With this postulates the charge and the energy take the form as prescribed by the experiment,

$$
\begin{gather*}
Q=\sum_{\vec{p} \lambda}\left(n_{\vec{p} \lambda}-\bar{n}_{\vec{p} \lambda}\right), \tag{24}\\
E=\sum_{\vec{p} \lambda} E_{\vec{p}}\left(n_{\vec{p} \lambda}+\bar{n}_{\vec{p} \lambda}\right), \tag{25}
\end{gather*}
$$

where $n_{\vec{p} \lambda}=a_{\vec{p}^{\prime} \lambda^{\prime}}^{\dagger} a_{\vec{p} \lambda}$ and $\bar{n}_{\vec{p} \lambda}=b_{\vec{p}^{\prime} \lambda^{\prime}}^{\dagger} b_{\vec{p} \lambda}$ are the number-of-particle and number-of-anti-particle operators with eigenvalues 0 and 1 .

Thus in canonical quantum field theory spin- $\frac{1}{2}$ particles are necessarily fermions.

Exercises

1. Show that for a classical particle with the action

$$
S=\int d t L(q, \dot{q})
$$

(a) the Euler-Lagrange equation is

$$
\frac{\partial}{\partial t} \frac{\partial L}{\partial \dot{q}}=\frac{\partial L}{\partial q} .
$$

(b) the (translation invariance) momentum is

$$
p=\frac{\partial L}{\partial \dot{q}} .
$$

(c) the (time invariance) energy is

$$
E=\frac{\partial L}{\partial \dot{q}} \dot{q}-L
$$

2. Show that for a classical particle with mass m the action

$$
S=-m \int d s
$$

where $d s^{2}=d t^{2}-d \vec{r}^{2}$ leads to the relativistic relation between energy and momentum,

$$
E^{2}=m^{2}+\vec{p}^{2}
$$

Hints:
(a) Show that the Lagrangian is

$$
L=-m \sqrt{1-\vec{v}^{2}} .
$$

(b) Show that the momentum is

$$
\vec{p}=\frac{m \vec{v}}{\sqrt{1-\vec{v}^{2}}}
$$

(c) Show that the energy is

$$
E=\frac{m}{\sqrt{1-\vec{v}^{2}}} .
$$

3. Calculate the current and the momentum of the positive- and negative-frequency solutions of the Dirac equation.
4. Find the projection operators $\mathcal{P}_{ \pm}$on the positive and negative frequency solutions of the Dirac equation.
5. The spinors $\phi \in\left(\frac{1}{2}, 0\right)$ and $\chi \in\left(0, \frac{1}{2}\right)$ are often called "left" and "right". Find out why. Hint: find the projection of the spin on the velocity vector as function of the velocity with which the spinor moves relative to the observer: consider a state with equal x -projections of the spin and then boost it along the x -axis. What happens if the spinor has zero-mass and is thus doomed to forever move with the speed of light?
6. Show that $\frac{d^{3} p}{2 E_{\vec{p}}}$ is invariant.

Hint: consider $d^{4} p \delta\left(p^{2}-m^{2}\right)$.

