Spin- $\frac{1}{2}$ field

Bispinors

The lowest irreducible representation of the full Lorentz group $O(1,3)$, containing spin- $\frac{1}{2}$, is

$$
\begin{equation*}
\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right) . \tag{1}
\end{equation*}
$$

The matrices from this representation transform four-component objects called bispinors or Dirac spinors,

$$
\begin{equation*}
\psi=\binom{\phi}{\chi} \tag{2}
\end{equation*}
$$

where the two-component objects $\phi \sim\left(\frac{1}{2}, 0\right)$ and $\chi \sim\left(0, \frac{1}{2}\right)$ are the (right and left) Weyl spinors. Their infinitesimal transformation matrices are

$$
\begin{equation*}
\mathrm{t}_{\left(\frac{1}{2}, 0\right)}=1+i \frac{1}{2} \vec{\sigma} d \vec{w}+i 0 d \vec{w}^{\star} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{t}_{\left(0, \frac{1}{2}\right)}=1+i 0 d \vec{w}+i \frac{1}{2} \vec{\sigma} d \vec{w}^{*} \tag{4}
\end{equation*}
$$

Apparently,

$$
\begin{equation*}
\mathrm{t}_{\left(0, \frac{1}{2}\right)}=\left(\mathrm{t}_{\left(\frac{1}{2}, 0\right)}^{\dagger}\right)^{-1} \tag{5}
\end{equation*}
$$

and therefore under a Lorentz transformation Λ

$$
\begin{equation*}
\phi \xrightarrow{\Lambda} \mathrm{t} \phi, \chi \xrightarrow{\Lambda} \mathrm{t}^{\dagger^{-1}} \chi \tag{6}
\end{equation*}
$$

where $\mathrm{t} \equiv \mathrm{t}_{\left(\frac{1}{2}, 0\right)}$.
Under the parity transformation, \mathcal{P}, the Weyl spinors transform into each other,

$$
\begin{equation*}
\phi \stackrel{\mathcal{P}}{\longleftrightarrow} \chi . \tag{7}
\end{equation*}
$$

Bilinear forms of bispinors

The Lagrangian for the filed must be a real scalar, bilinear in the field. That is, it has to be built out of $\psi^{+} \otimes \psi$ which transforms under the representation

$$
\begin{equation*}
\left(\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)\right)^{*} \otimes\left(\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)\right) \tag{8}
\end{equation*}
$$

According to the general rule this direct product reduces to a direct sum of the following representations,

$$
\begin{equation*}
(0,0) ;(0,1) \oplus(1,0) ;\left(\frac{1}{2}, \frac{1}{2}\right) \tag{9}
\end{equation*}
$$

where the first is scalar, the second - antisymmetric tensor, and the third - four-vector.

Scalars

Using the transformation laws (6) and (7) it is easy to show that the (real) scalar is the combination

$$
\begin{equation*}
\bar{\psi} \psi \equiv \phi^{+} \chi+\chi^{+} \phi \tag{10}
\end{equation*}
$$

where $\bar{\psi} \equiv \psi^{\dagger} \gamma^{0}$ and the block-matrix γ^{0} is given as

$$
\gamma^{0}=\left[\begin{array}{ll}
0 & \mathbf{1} \tag{11}\\
\mathbf{1} & 0
\end{array}\right]
$$

The combination

$$
\begin{equation*}
i \bar{\psi} \gamma^{5} \psi \equiv-i\left(\phi^{+} \chi-\chi^{+} \phi\right) \tag{12}
\end{equation*}
$$

where

$$
\gamma^{5}=\left[\begin{array}{rr}
\mathbf{1} & 0 \tag{13}\\
0 & -\mathbf{1}
\end{array}\right]
$$

is a (real) pseudo-scalar, that is, it changes sign under parity transformation.

Vectors

Since $\phi=\left(\frac{1}{2}, 0\right)$ and $\phi^{*}=\left(0, \frac{1}{2}\right)$, their direct product is a four-vector,

$$
\begin{equation*}
\phi^{*} \otimes \phi=\left(\frac{1}{2}, \frac{1}{2}\right) . \tag{14}
\end{equation*}
$$

Apparently, this four-vector is

$$
\begin{equation*}
\left\{\phi^{+} \phi, \phi^{+} \vec{\sigma} \phi\right\} \tag{15}
\end{equation*}
$$

Analogously,

$$
\begin{equation*}
\left\{\chi^{+} \chi, \chi^{+} \vec{\sigma} \chi\right\} \tag{16}
\end{equation*}
$$

is also a four-vector.
Now we can build a polar vector,

$$
\begin{equation*}
\bar{\psi} \gamma^{a} \psi \equiv\left\{\phi^{+} \phi+\chi^{+} \chi, \phi^{+} \vec{\sigma} \phi-\chi^{+} \vec{\sigma} \chi\right\}, \tag{17}
\end{equation*}
$$

and an axial- or pseudo-vector,

$$
\begin{equation*}
i \bar{\psi} \gamma^{a} \gamma^{5} \psi \equiv i\left\{\phi^{+} \phi-\chi^{+} \chi, \phi^{+} \vec{\sigma} \phi+\chi^{+} \vec{\sigma} \chi\right\} \tag{18}
\end{equation*}
$$

where $\gamma^{a}=\left\{\gamma^{0}, \vec{\gamma}\right\}$ and

$$
\vec{\gamma}=\left[\begin{array}{rr}
0 & -\vec{\sigma} \tag{19}\\
\vec{\sigma} & 0
\end{array}\right]
$$

Antisymmetric tensor

The representation $(0,1)$ can be made of

$$
\begin{equation*}
\phi^{*} \otimes \chi \sim\left(0, \frac{1}{2}\right) \otimes\left(0, \frac{1}{2}\right) \ni(0,1), \tag{20}
\end{equation*}
$$

and, correspondingly, $(1,0)$ out of

$$
\begin{equation*}
\chi^{*} \otimes \phi \sim\left(\frac{1}{2}, 0\right) \otimes\left(\frac{1}{2}, 0\right) \ni(1,0) . \tag{21}
\end{equation*}
$$

Under rotations the objects $(0,1)$ and $(1,0)$ transform as pure vectors. Apparently they are

$$
\begin{equation*}
\phi^{+} \vec{\sigma} \chi \sim(0,1) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi^{+} \vec{\sigma} \phi \sim(1,0) . \tag{23}
\end{equation*}
$$

Under reflections these two objects transform into each other. Therefore their sum and difference is a six-component objects that transforms through itself under the full Lorentz group $O(1,3)$.
Using gamma-matrices this tensor is usually written as

$$
\begin{equation*}
\frac{1}{2} \bar{\psi}\left(\gamma^{a} \gamma^{b}-\gamma^{b} \gamma^{a}\right) \psi \tag{24}
\end{equation*}
$$

Resume

The direct product $\psi^{*} \otimes \psi$ of two bispinors can be reduced into five irreducible covariant objects:

1. scalar, $\bar{\psi} \psi$;
2. pseudo-scalar, $i \bar{\psi} \gamma_{5} \psi$;
3. vector, $\bar{\psi} \gamma^{a} \psi$;
4. pseudo-vector, $i \bar{\psi} \gamma^{a} \gamma_{5} \psi$;
5. antisymmetric tensor, $\frac{1}{2} \bar{\psi}\left(\gamma^{a} \gamma^{b}-\gamma^{b} \gamma^{a}\right) \psi$,
where $\bar{\psi} \equiv \psi^{\dagger} \gamma_{0}$ and the block-matrices γ^{a} and γ^{5} are called gamma-matrices or Dirac matrices.

Gamma matrices

The bispinors and gamma-matrices in the previous section are given in the so-called Weyl or chiral basis. A similarity transformation

$$
\begin{align*}
\psi & \rightarrow S \psi \\
\gamma^{a} & \rightarrow S \gamma^{a} S^{-1} \tag{25}
\end{align*}
$$

with the matrix

$$
S=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \tag{26}\\
1 & -1
\end{array}\right]
$$

changes Weyl basis into Dirac or standard basis, where the γ-matrices are

$$
\begin{align*}
\gamma_{0} & =\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \tag{27}\\
\vec{\gamma} & =\left[\begin{array}{rr}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right] \tag{28}\\
\gamma_{5} & =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] . \tag{29}
\end{align*}
$$

The γ-matrices satisfy the anti-commutation relation

$$
\begin{equation*}
\gamma^{a} \gamma^{b}+\gamma^{b} \gamma^{a}=2 g^{a b}, \tag{30}
\end{equation*}
$$

where $g^{a b}$ is the Minkowski metric tensor. The matrix γ_{5} anti-commutes with γ^{a},

$$
\begin{equation*}
\left\{\gamma^{a}, \gamma_{5}\right\}=0 . \tag{31}
\end{equation*}
$$

Lagrangian of spin- $\frac{1}{2}$ field

The Lagrangian must be a real scalar, bilinear in ψ and $\partial_{a} \psi$. A suitable form is

$$
\begin{equation*}
\mathcal{L}=\frac{i}{2}\left(\bar{\psi} \gamma^{a} \partial_{a} \psi-\partial_{a} \bar{\psi} \gamma^{a} \psi\right)-m \bar{\psi} \psi . \tag{32}
\end{equation*}
$$

Dirac equation

The general expression for the Euler-Lagrange equation,

$$
\begin{equation*}
\partial_{a} \frac{\partial \mathcal{L}}{\partial\left(\partial_{a} \bar{\psi}\right)}=\frac{\partial \mathcal{L}}{\partial \bar{\psi}}, \tag{33}
\end{equation*}
$$

with the Lagrangian (32) leads to the so-called Dirac equation,

$$
\begin{equation*}
\left(i \gamma^{a} \partial_{a}-m\right) \psi=0 \tag{34}
\end{equation*}
$$

Energy-momentum tensor and conserved current

Again, using the general expressions, the energymomentum tensor and the conserved current are directly obtained from the Lagrangian,

$$
\begin{gather*}
T_{0}^{0}=-i \bar{\psi} \vec{\gamma} \vec{\partial} \psi+m \bar{\psi} \psi \tag{35}\\
j^{a}=\bar{\psi} \gamma^{a} \psi \tag{36}
\end{gather*}
$$

Exercises

1. Argue that the 2×2 representation of the Lie algebra ${ }^{1}$ of the rotation group is the group of special unitary 2×2 matrices (called $S U(2)$). In other words, argue that $S U(2)$ group has the same Lie algebra, as the rotation group $S O(3)$.
2. Show that after a rotation by 2π a spinor ${ }^{2}$ changes sign.
3. Show that the Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left(\bar{\psi} \gamma^{a} \partial_{a} \psi+\partial_{a} \bar{\psi} \gamma^{a} \psi\right)-m \bar{\psi} \psi
$$

does not lead to a good Euler-Lagrange equation.
4. Show by direct calculation that the current $\bar{\psi} \gamma^{a} \psi$ conserves if ψ is a solution of the Dirac equation.
5. Calculate the energy-momentum tensor for the spin-1/2 field.

[^0]6. Show that if bispinor ψ is a solution to the Dirac equation, then its components satisfy the Klein-Gordon equation ${ }^{3}$.

[^1]
[^0]: ${ }^{1}$ in physics, a representation of a Lie algebra is a group of matrices whose generators have the given Lie algebra
 ${ }^{2}$ here 'spinor' is an object transformed by a 2×2 representation of the rotation group.

[^1]: ${ }^{3}$ Hint: multiply the Dirac equation by $\left(i \gamma^{b} \partial_{b}+m\right)$ from the left.

