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Transformational properties of

fields

It was relatively easy to build a covariant the-
ory of a scalar (one-component) field. For multi-
component fields (like the electro-magnetic field)
we need to learn their transformational properties
under coordinate transformations.

Group of coordinate transformations

The coordinate transformations between inertial
frames, x → x′ = ax, where a is the transforma-
tion matrix, form a group, where the group opera-
tion is composition; the identity element is identi-
cal transformation; and the inverse element is the
inverse transformation. In special relativity the
group of admissible coordinate transformations is
called Poicaré group and includes velocity boosts,
rotations, translations and reflections. The Lorentz
group is its subgroup made of rotations and velocity
boosts (that is, continuous linear transformations
which leave the origin fixed).

Under a coordinate transformation from the
Lorentz group1 x→ x′ = ax an n-component phys-
ical quantity ψ transforms via some n × n matri-
ces ta, ψ → ψ′ = taψ. Matrices {ta} form a group
homomorphic to the group {a} of coordinate trans-
formations. Indeed the group operations are appar-
ently preserved,

ta1a2
= ta1

ta2
, ta−1 = (ta)

−1 , ta=1 = 1 . (1)

The group {ta} is referred to as a representation

of the group of coordinate transformation.

Lie groups and Lie algebras

The transformation matrices for rotations and ve-
locity boosts are differentiable functions of the
transformation parameters (correspondingly, rota-
tion angle and velocity).

A group {g} whose elements are differentiable
functions of of continuous parameters, g(α1, ..., αn),
is called a Lie group.

An element close to unity (assuming g(0) = 1)
can be expressed in terms of the generators Ik,

g(dα) = 1 + i
n
∑

k=1

Ikdαk . (2)

1translations do not change the fields and therefore can
be safely omitted; reflections are discrete transformations
and will be considered separately later.

The commutation relation of the generators is
called Lie algebra,

IjIm − ImIj = i

n
∑

k=1

Ck
jmIk , (3)

where Ck
jm are the so called the structure constants.

The Lie algebra largely defines the properties of a
Lie group.

Lie algebra of rotation group

The transformation of the coordinates under a ro-
tation around z-axis over the angle θ is given as





x′

y′

z′



 =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1









x
y
z



 . (4)

For an infinitesimally small angle dθ the rotation
matrix can be written as

1 + i





0 −i 0
i 0 0
0 0 0



 dθ ≡ 1 + iIzdθ , (5)

where Iz is the generator of an infinitesimal rota-
tion around z-axis. The corresponding generators
Ix and Iy are

Iy =





0 0 i
0 0 0
−i 0 0



 , Ix =





0 0 0
0 0 −i
0 i 0



 .

(6)
Direct calculation shows that these generators

have the Lie algebra

IkIl − IlIk = i
∑

m

ǫklmIm , (7)

where ǫklm is the antisymmetric symbol2 (also
called Levi-Civita symbol) of rank 3.
Rotation group is customarily denoted SO(3):

special (determinant=1) orthogonal matrix 3×3.

Lie algebra of the Lorentz group

The Lorentz group consists of rotations and velocity
boosts. The 4-dimensional rotation generators can
be written immediately from (5) and (6) as

Jz =









0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0









Jy =









0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0









2ǫjkl is equal +1 (-1) if (j, k, l) is an even (odd) permu-
tation of (1, 2, 3), otherwise it is equal zero.
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Jx =









0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0









. (8)

The Lorentz boost matrix for an infinitesimally
small relative velocity dv along one of the axes is

(

1 −dv
−dv 1

)

= 1 + i

(

0 i
i 0

)

dv . (9)

Thus the three generators of velocity boosts are

Kz =









0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0









Ky =









0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0









Kx =









0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0









. (10)

Direct calculation gives the Lie algebra of the
Lorentz group,

JkJl − JlJk = i
∑

m

ǫklmJm (11)

JkKl −KlJk = i
∑

m

ǫklmKm (12)

KkKl −KlKk = −i
∑

m

ǫklmJm . (13)

The infinitesimal group element corresponding to
a rotation around direction ~n with angle dθ, and a
velocity boost d~v, is given as3

g = 1+ i ~J~ndθ + i ~Kd~v . (14)

The Lie algebra of the Lorentz group can be writ-
ten in a more symmetric way with the (complex)
parameterization

d~w = ~ndθ + id~v . (15)

The infinitesimal Lorentz transformation in is then

g = 1+ i ~Md~w + i ~Nd~w∗ , (16)

where the (hermitian) generators ~M and ~N are lin-

ear combinations of generators ~J and ~K

~M =
1

2
( ~J − i ~K) , ~N =

1

2
( ~J + i ~K) . (17)

The Lie algebra for the new generators is

MkMl −MlMk = i
∑

m

ǫklmMm , (18)

NkNl −NlNk = i
∑

m

ǫklmNm , (19)

MkNl −NlMk = 0 . (20)

Thus the Lorentz Lie algebra is a combination of
two independent rotation Lie algebras.

3where ~a~b ≡ a1b1 + a2b2 + a3b3

Irreducible representations of the rotation

group

Instead of the generators Ix, Iy , Iz we shall use
another parameterization, I+, I−, Iz, where

I± =
1√
2
(Ix ± iIy), (21)

with the commutation relations

IzI± − I±Iz = ±I± , I+I− − I−I+ = Iz . (22)

Since Iz is hermitian, it has a set of real eigenvalues
λ with the corresponding eigenvectors |λ〉,

Iz |λ〉 = λ|λ〉 . (23)

From the commutation relations (22) it follows
that the states I±|λ〉 are also eigenvectors of Iz,

Iz(I±|λ〉) = (λ ± 1)(I±|λ〉). (24)

For a finite dimension representation there must
exist the largest eigenvalue, say j, such that

I+|j〉 = 0. (25)

Similarly, there should also exist the smallest
eigenvalue, such that

(I−)
(N+1)|j〉 = 0, (26)

where N is some integer number.
Thus the eigenvalues of Iz is the sequence

j, j − 1, j − 2, ..., j −N. (27)

The trace of the generator Iz is equal zero4,

trace(Iz) = j + (j − 1) + ...+ (j −N)

=
1

2
(2j −N)(N + 1) = 0 . (28)

Thus j = N/2 (either integer or half-integer) and
the eigenvalues of Iz are j, j−1, ...,−j. The dimen-
sion of a representation with a given j is 2j + 1.
The quantities that transform under the irre-

ducible representations (j) of the rotation group are
the spherical tensors which are irreducible combi-
nations of normal Euclidean tensors. Half integer j
correspond to objects called spinors.

4taking trace of the commutation relation
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