Transformational properties of fields

It was relatively easy to build a covariant theory of a scalar (one-component) field. For multicomponent fields (like the electro-magnetic field) we need to learn their transformational properties under coordinate transformations.

Group of coordinate transformations

The coordinate transformations between inertial frames, $x \rightarrow x^{\prime}=a x$, where a is the transformation matrix, form a group, where the group operation is composition; the identity element is identical transformation; and the inverse element is the inverse transformation. In special relativity the group of admissible coordinate transformations is called Poicaré group and includes velocity boosts, rotations, translations and reflections. The Lorentz group is its subgroup made of rotations and velocity boosts (that is, continuous linear transformations which leave the origin fixed).
Under a coordinate transformation from the Lorentz group ${ }^{1} x \rightarrow x^{\prime}=a x$ an n-component physical quantity ψ transforms via some $n \times n$ matrices $t_{a}, \psi \rightarrow \psi^{\prime}=t_{a} \psi$. Matrices $\left\{t_{a}\right\}$ form a group homomorphic to the group $\{a\}$ of coordinate transformations. Indeed the group operations are apparently preserved,

$$
\begin{equation*}
t_{a_{1} a_{2}}=t_{a_{1}} t_{a_{2}}, t_{a^{-1}}=\left(t_{a}\right)^{-1}, t_{a=\mathbf{1}}=\mathbf{1} \tag{1}
\end{equation*}
$$

The group $\left\{t_{a}\right\}$ is referred to as a representation of the group of coordinate transformation.

Lie groups and Lie algebras

The transformation matrices for rotations and velocity boosts are differentiable functions of the transformation parameters (correspondingly, rotation angle and velocity).

A group $\{g\}$ whose elements are differentiable functions of of continuous parameters, $g\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, is called a Lie group.

An element close to unity (assuming $g(0)=\mathbf{1}$) can be expressed in terms of the generators I_{k},

$$
\begin{equation*}
g(d \alpha)=1+i \sum_{k=1}^{n} I_{k} d \alpha_{k} . \tag{2}
\end{equation*}
$$

[^0]The commutation relation of the generators is called Lie algebra,

$$
\begin{equation*}
I_{j} I_{m}-I_{m} I_{j}=i \sum_{k=1}^{n} C_{j m}^{k} I_{k} \tag{3}
\end{equation*}
$$

where $C_{j m}^{k}$ are the so called the structure constants. The Lie algebra largely defines the properties of a Lie group.

Lie algebra of rotation group

The transformation of the coordinates under a rotation around z-axis over the angle θ is given as

$$
\left(\begin{array}{l}
x^{\prime} \tag{4}\\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

For an infinitesimally small angle $d \theta$ the rotation matrix can be written as

$$
1+i\left(\begin{array}{ccc}
0 & -i & 0 \tag{5}\\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) d \theta \equiv 1+i I_{z} d \theta
$$

where I_{z} is the generator of an infinitesimal rotation around z-axis. The corresponding generators I_{x} and I_{y} are

$$
I_{y}=\left(\begin{array}{ccc}
0 & 0 & i \tag{6}\\
0 & 0 & 0 \\
-i & 0 & 0
\end{array}\right), I_{x}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right)
$$

Direct calculation shows that these generators have the Lie algebra

$$
\begin{equation*}
I_{k} I_{l}-I_{l} I_{k}=i \sum_{m} \epsilon_{k l m} I_{m} \tag{7}
\end{equation*}
$$

where $\epsilon_{k l m}$ is the antisymmetric symbol ${ }^{2}$ (also called Levi-Civita symbol) of rank 3.
Rotation group is customarily denoted $\mathrm{SO}(3)$: special (determinant $=1$) orthogonal matrix 3×3.

Lie algebra of the Lorentz group

The Lorentz group consists of rotations and velocity boosts. The 4-dimensional rotation generators can be written immediately from (5) and (6) as
$J_{z}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \quad J_{y}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i \\ 0 & 0 & 0 & 0 \\ 0 & -i & 0 & 0\end{array}\right)$

[^1]\[

J_{x}=\left($$
\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{8}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & i & 0
\end{array}
$$\right)
\]

The Lorentz boost matrix for an infinitesimally small relative velocity $d v$ along one of the axes is

$$
\left(\begin{array}{cc}
1 & -d v \tag{9}\\
-d v & 1
\end{array}\right)=1+i\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) d v
$$

Thus the three generators of velocity boosts are

$$
\begin{gather*}
K_{z}=\left(\begin{array}{cccc}
0 & 0 & 0 & i \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right) K_{y}=\left(\begin{array}{cccc}
0 & 0 & i & 0 \\
0 & 0 & 0 & 0 \\
i & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
K_{x}=\left(\begin{array}{cccc}
0 & i & 0 & 0 \\
i & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) . \tag{10}
\end{gather*}
$$

Direct calculation gives the Lie algebra of the Lorentz group,

$$
\begin{align*}
J_{k} J_{l}-J_{l} J_{k} & =i \sum_{m} \epsilon_{k l m} J_{m} \tag{11}\\
J_{k} K_{l}-K_{l} J_{k} & =i \sum_{m}^{m} \epsilon_{k l m} K_{m} \tag{12}\\
K_{k} K_{l}-K_{l} K_{k} & =-i \sum_{m} \epsilon_{k l m} J_{m} \tag{13}
\end{align*}
$$

The infinitesimal group element corresponding to a rotation around direction \vec{n} with angle $d \theta$, and a velocity boost $d \vec{v}$, is given as ${ }^{3}$

$$
\begin{equation*}
g=\mathbf{1}+i \vec{J} \vec{n} d \theta+i \vec{K} d \vec{v} \tag{14}
\end{equation*}
$$

The Lie algebra of the Lorentz group can be written in a more symmetric way with the (complex) parameterization

$$
\begin{equation*}
d \vec{w}=\vec{n} d \theta+i d \vec{v} . \tag{15}
\end{equation*}
$$

The infinitesimal Lorentz transformation in is then

$$
\begin{equation*}
g=1+i \vec{M} d \vec{w}+i \vec{N} d \vec{w}^{*} \tag{16}
\end{equation*}
$$

where the (hermitian) generators \vec{M} and \vec{N} are linear combinations of generators \vec{J} and \vec{K}

$$
\begin{equation*}
\vec{M}=\frac{1}{2}(\vec{J}-i \vec{K}), \vec{N}=\frac{1}{2}(\vec{J}+i \vec{K}) \tag{17}
\end{equation*}
$$

The Lie algebra for the new generators is

$$
\begin{align*}
M_{k} M_{l}-M_{l} M_{k} & =i \sum_{m} \epsilon_{k l m} M_{m} \tag{18}\\
N_{k} N_{l}-N_{l} N_{k} & =i \sum_{m} \epsilon_{k l m} N_{m} \tag{19}\\
M_{k} N_{l}-N_{l} M_{k} & =0 \tag{20}
\end{align*}
$$

Thus the Lorentz Lie algebra is a combination of two independent rotation Lie algebras.

[^2]
Irreducible representations of the rotation group

Instead of the generators I_{x}, I_{y}, I_{z} we shall use another parameterization, I_{+}, I_{-}, I_{z}, where

$$
\begin{equation*}
I_{ \pm}=\frac{1}{\sqrt{2}}\left(I_{x} \pm i I_{y}\right) \tag{21}
\end{equation*}
$$

with the commutation relations

$$
\begin{equation*}
I_{z} I_{ \pm}-I_{ \pm} I_{z}= \pm I_{ \pm}, I_{+} I_{-}-I_{-} I_{+}=I_{z} \tag{22}
\end{equation*}
$$

Since I_{z} is hermitian, it has a set of real eigenvalues λ with the corresponding eigenvectors $|\lambda\rangle$,

$$
\begin{equation*}
I_{z}|\lambda\rangle=\lambda|\lambda\rangle . \tag{23}
\end{equation*}
$$

From the commutation relations (22) it follows that the states $I_{ \pm}|\lambda\rangle$ are also eigenvectors of I_{z},

$$
\begin{equation*}
I_{z}\left(I_{ \pm}|\lambda\rangle\right)=(\lambda \pm 1)\left(I_{ \pm}|\lambda\rangle\right) . \tag{24}
\end{equation*}
$$

For a finite dimension representation there must exist the largest eigenvalue, say j, such that

$$
\begin{equation*}
I_{+}|j\rangle=0 \tag{25}
\end{equation*}
$$

Similarly, there should also exist the smallest eigenvalue, such that

$$
\begin{equation*}
\left(I_{-}\right)^{(N+1)}|j\rangle=0, \tag{26}
\end{equation*}
$$

where N is some integer number.
Thus the eigenvalues of I_{z} is the sequence

$$
\begin{equation*}
j, j-1, j-2, \ldots, j-N \tag{27}
\end{equation*}
$$

The trace of the generator I_{z} is equal zero ${ }^{4}$,

$$
\begin{align*}
\operatorname{trace}\left(I_{z}\right) & =j+(j-1)+\ldots+(j-N) \\
& =\frac{1}{2}(2 j-N)(N+1)=0 . \tag{28}
\end{align*}
$$

Thus $j=N / 2$ (either integer or half-integer) and the eigenvalues of I_{z} are $j, j-1, \ldots,-j$. The dimension of a representation with a given j is $2 j+1$.

The quantities that transform under the irreducible representations (j) of the rotation group are the spherical tensors which are irreducible combinations of normal Euclidean tensors. Half integer j correspond to objects called spinors.

[^3]
[^0]: ${ }^{1}$ translations do not change the fields and therefore can be safely omitted; reflections are discrete transformations and will be considered separately later.

[^1]: ${ }^{2} \epsilon_{j k l}$ is equal $+1(-1)$ if (j, k, l) is an even (odd) permutation of $(1,2,3)$, otherwise it is equal zero.

[^2]: ${ }^{3}$ where $\vec{a} \vec{b} \equiv a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$

[^3]: ${ }^{4}$ taking trace of the commutation relation

