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Non-relativistic limit of QFT

In the non-relativistic limit the QFT expres-
sion for the S-matrix reduces to the Lippmann-
Schwinger equation for the scattering amplitude.
The Lippmann-Schwinger equation is equivalent to
the Schrödinger equation.
In the first order Born approximation the elas-

tic scattering amplitude is given by the Fourier
transform of the potential. Inversely, the potential
is given as inverse Fourier transform of the scat-
tering amplitude. The prescription to obtain the
non-relativistic potential from a QFT is then rel-
atively simple: calculate the relativistic transition
amplitude for the elastic scattering in the lowest or-
der perturbation theory; make the non-relativistic
limit; and calculate the inverse Fourier transform.

Lippmann-Schwinger equation

Consider a non-relativistic elastic scattering in a
system of two particles described by the Hamilto-
nian

H = H0 + V , H0 = −
~
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2m
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∂r2
(1)

where V (r) is the interaction potential, m is the
reduced mass of the two particles, r is their relative
distance, and ~ is the Planck’s constant.
The cross-section of the scattering from the ini-

tial state with relative momentum k into the final
state with relative momentum k′ is determined by
the so called reaction matrix1 denoted here as M
(for certain reasons which are of little importance
in the present context),
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It follows directly from the Schrödinger equa-
tion2 that the reaction matrix satisfies the so called

1the reaction matrix is, of course, proportional to S − 1,
where S is the S-matrix.

2In the non-relativistic quantum mechanics calculating
the cross-section dσ involves solving the the Schrödinger
equation
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where ψ
(+)
k

is the scattering wave-function with the asymp-
totic

ψ
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where f is the scattering amplitude and the cross section is
given as dσ/dΩ = |f |2.

Multiplying the Schrödinger equation by (E−H0)−1 from
the left leads to the Lippmann-Schwinger equation for the
scattering wave-function,

|ψ
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〉 = |k〉+G
(+)
0 (k)V |ψ
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〉 , (5)

where |k〉 is the free plane-wave solution with momentum k,

H0|k〉 =
~2k2

2m
|k〉 (6)

Lippmann-Schwinger equation,

M = V + V G0M , (12)

where G0 is the free Green’s function (with the cor-
rect boundary condition),

G0 =
1

E −H0 + i0
. (13)

The solution of the Lippmann-Schwinger equa-
tion can be written as perturbation series in V ,

M = V + V G0V + V G0V G0V + . . . , (14)

where the first term is the Born approximation,

〈k′Mk〉 = 〈k′V k〉 =

∫

d3rV (r)eiqr , (15)

where q = k− k′ is the transferred momentum.
It is actually the series (14) that the QFT ex-

pression for the reaction amplitude reduces to in
the non-relativistic limit.

Ladder diagrams

One can show that only the so called ladder dia-
grams, �

, (16)

survive in the non-relativistic limit.
The total scattering amplitude, denoted as�

(17)

and where G0 is the free Green’s function (with the correct
boundary condition of outgoing waves),

G
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Using the explicit expression for the free Green’s function in
coordinate space,
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where k′ = kr

r
one can easily show that

f ∝ 〈k′|V |ψ
(+)
k

〉 . (10)

The reaction matrix M is defined as the right-hand-side of
(10)

〈k′|M |k〉 = 〈k′|V |ψ
(+)
k

〉 . (11)

Multiplying (5) by 〈k′|V from the left and dropping the
annoying superscripts immediately leads to (12).
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is apparently the sum of all ladder diagrams,� =�+� + . . .
(18)

Equation (18) can be rewritten into the
Lippmann-Schwinger equation,� =�+�.

(19)

Clearly (19) is equivalent to the Lippmann-
Schwinger equation (12) if we assume

V =
�

(20)

In conclusion, in the non-relativistic limit a QFT
reduces to the Schrödinger equation with the po-
tential equal to the inverse Fourier transform of the
lowest order elastic scattering amplitude.

Exercises

One-boson exchange potential

Calculate the non-relativistic one boson exchange

potential corresponding to the diagram (20) for
a pseudo-scalar boson interaction Lagrangian
−gψ̄γ5ψφ.

Hints:
The matrix element is given as

M = i2g2ū(p′1)γ5u(p1)
1

k2 − µ2
ū(p′2)γ5u(p2) (21)

The Dirac bispinor up is
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which gives
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In the non-relativistic limit E ≈ m up to the
terms v2
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Now introducing p1 − p′
1 = −q gives
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In the c.m. frame

k2 − µ2 = −(q2 + µ2) (28)

and finally
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The one-pseudo-scalar-boson-exchange-potential
is the given as
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The integral
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The OBEP with pseudo-scalar boson is thus
a finite-range spin-spin and tensor potential of
Yukawa type with the range equal to inverse mass
of the exchange boson.
The OBEP with a vector boson has a slightly

different spin structure which in addition includes
central and spin-orbit forces. The central force has
the Yukawa form e−µr/r. In the limit of massless
vector boson this gives the Coulomb central poten-
tial.
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